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Abstract 

The increase in awareness of counterparty credit risk and international financial reporting 

standards has led to the requirement of estimates for the default probability of counterparties in 

over the counter derivative transactions. Default probabilities are necessary for the calculation 

credit value adjustments (CVA), which can be seen as the quantification of counterparty credit 

risk. In this research paper different methods and models for estimating default probabilities is 

reviewed and a detailed summary of the application of these models in a South African context 

is given. It was found that credit risk models can, to an extent, be used as a reflection of credit 

risk. The methodology followed using South African bond mark to market data to obtain a matrix 

of credit spreads for different rating classes is then outlined and corresponding default 

probabilities for the different rating classes are then calculated. The methodology however is not 

completely general and the obtained credit spreads are higher than that of previous studies. 

Overall it was found that South African bond mark to market data can be used for inferring 

default probabilities for the purpose of CVA calculations. 

Key words: 

Credit valuation adjustments; Default probabilities; Credit spreads; Credit ratings; South African 

bond market 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

As opposed to market risk, credit risk is still a developing field and there are fewer common 

practices. Credit risk is the risk arising from the uncertainty with regard to fulfilment of a debtor 

or counterparty’s contractual obligations in terms of interest and principle payments (Gregory, 

2012a: 10). Counterparty credit risk (CCR), also known as default risk, is the credit risk that 

exists between over the counter (OTC) derivative counterparties (Gregory, 2012a: 18). The 

measurement of default risk and understanding probabilities of default is therefore important to 

the general market. Every derivative position held, where the contract is an asset, is exposed to 

default risk unless it is fully mitigated (Hull, 2009: 500). Most OTC positions that do not have a 

credit support annex (CSA) in place are exposed to CCR and fair value adjustments need to be 

made (Gregory, 2012a: 62-63) to incorporate CCR. One of these adjustments, credit valuation 

adjustment (CVA), which can be seen as the measurement of CCR, is now more often than not 

considered in the pricing of derivative trades as well as financial reporting. For these 

adjustments to be made certain values need to be estimated, one of which is the default 

probability of the counterparty.  

1.2 BACKGROUND/RATIONALE 

Following the September 2008 financial crisis, which was mainly a result of insufficient financial 

regulation, it was clear that no counterparty could be regarded as completely risk free or too big 

to fail. Counterparty credit risk became increasingly prevalent in global financial markets 

(Gregory, 2012a: 6). International Financial Reporting Standards (IFRS) 13, effective from 1 

January 2013 states  

“The entity shall include the effect of the entity’s net exposure to the credit risk of that or 

the counterparty’s net exposure to the credit risk of the entity in the fair value 

measurement when market participants would take into account any existing 

arrangements that mitigate credit risk exposure in the event of default” 

(Gregory, 2012b: 4). 

With the increase in general awareness of CCR and changes in financial reporting regulation, 

the market has moved away from risk-free pricing and started incorporating CCR within their 

derivative valuation (Ernst & Young, 2014). 

Counterparty risk and CVA is a relatively new topic and many financial institutions are still in the 

process of integrating it into their existing risk management and reporting structures. Default risk 

modelling is an integral part of CVA calculations as counterparties’ default probabilities are 
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needed for CVA calculations. A survey conducted by Deloitte (2013) found a consensus, that 

because of the accounting standards, CVA quantification should rather use market implied 

parameters than historical parameters. In order to implement these regulations, various models 

need to be constructed. One of these would be a model that estimates risk neutral default 

probabilities, which is a parameter obtained from observed market data. The necessary market 

data also needs to be modelled to obtain values for unobservable points. 

1.3 PROBLEM STATEMENT 

The changes in financial reporting regulations imply that non-banks also have to incorporate fair 

value adjustments like CVA into their derivative valuation. Therefore a simple and efficient 

model is necessary to estimate default probabilities that correspond to the defaultable entity. It 

is therefore the aim of this research to model the term structure of risk neutral default 

probabilities for the different credit ratings that can be used for CVA calculations.  

Defining credit spreads from the premiums of single-name credit default swaps (CDSs) instead 

of bond yields compared to some benchmark would give a more accurate measure of CCR, but 

CDS data is complex and not readily available. Using bond market data should give a similar 

spread to the spreads obtained from the CDS market Gregory (2012a: 215). Therefore for non-

banks the bond mark to market data would be easier to obtain and interpret to use for defining 

credit spreads. Obtaining a model that accurately estimates risk neutral default probabilities 

from bond mark to market data would imply that it could be easily implemented for CVA 

modelling and used for valuation of derivatives.  

Theoretically, the plot of the term structure of default probability should be an upward sloping 

curve, because the marginal probability of default increases over time (Gregory, 2012a: 206). 

The fitted curves for the models of the different credit ratings should more or less have the 

same shape but with the average probability of default of corporate bonds with higher credit 

ratings being lower, because bonds with lower credit ratings run a greater risk of defaulting.  

1.4 RESEARCH DESIGN 

This research paper has both qualitative and quantitative aspects. The qualitative part, which is 

the majority of this paper, is the review of different methods for inferring or estimating default 

probabilities with specific reference to methods using market data and more specifically credit 

spreads obtained from market data.  

In Chapter 2 the relevant literature regarding default probabilities is discussed in detail. First 

there is referred to CVA and which measure of default probability is necessary for its 

quantification. Thereafter different classes of models, structural and reduced form, for 
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estimation of risk-neutral default probabilities and credit spreads are reviewed with regard to the 

underlying theory and practical implementation of the models or methods.  

The relationship between corporate bond spreads and credit default swap spreads is also 

discussed and why corporate bond spreads can be used for estimation of risk-neutral default 

probabilities and ultimately the quantification of CVA. Reference is also made to different 

methods for modelling the term structure of credit spreads on corporate bonds form observed 

market data through interpolation and extrapolation. Applications of the Merton model on South 

African data as well as results of the empirical studies are given and interpreted.  

Thereafter follows Chapter 3, which describes the methodology followed for obtaining credit 

spreads for the different rating classes and all unobservable maturities from South African bond 

mark to market data. The credit spreads for the different rating classes are then used for 

estimation of the default probability for the different rating classes.  

In Chapter 4 the results obtained from following the methodology in Chapter 3. The methods 

were applied to consecutive months of data to test whether it is not just suitable for the 

particular data set it was developed from. It is then also compared with previous results from 

studies on the South African market to test whether the model delivers results which are in line 

with expectations and delivers predictions that can be used for the purpose of CVA 

quantification. 

A summary of the results and findings as well as overall conclusions can then be found in 

Chapter 5. It also includes the limitations of this research and recommendations for further 

study. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

In this chapter the literature on the factors necessary for quantification of credit valuation 

adjustments (CVA), which includes the construction of credit spreads and estimation of default 

probabilities will be discussed and interpreted. There is also referred to how corporate bond 

spreads can be linked to credit default swap spreads and the use thereof for estimating default 

probabilities. The application of credit risk models and default probabilities in a South African 

context are also discussed.   

2.2 CREDIT VALUATION ADJUSTMENTS 

Counterparty credit risk (CCR) is a representation of market risk; in the form of the expected 

exposure of the financial instrument or derivative, and credit risk which defines the credit quality 

of the counterparty.  A counterparty with large exposure and small default probability might be 

less desirable than a counterparty with small exposure and large default probability. CVA is 

precise quantification of CCR which makes it comparable and able to distinguish between the 

two before mentioned scenarios (Gregory, 2012a: 18).   

Global regulation after the 2008 financial crisis seems to view CVA as being a necessary mark 

to market trading book item; which is regularly updated and calculated from market variables, 

rather than a banking book component calculated form historical data, which is not updated and 

held to maturity, as it was seen in the past (Gregory, 2012a: 19). This mark to market value of 

CVA should be presented along with the over the counter (OTC) derivative it was derived from. 

When valuing an OTC derivative CCR must be included, but it is possible for the value to be 

divided into separate components, which implies that a transaction and CCR accompanied with 

it can be priced and risk-managed separately (Gregory, 2012a: 242). 

𝑅𝑖𝑠𝑘𝑦 𝑣𝑎𝑙𝑢𝑒 = 𝑟𝑖𝑠𝑘 𝑓𝑟𝑒𝑒 𝑣𝑎𝑙𝑢𝑒 − 𝐶𝑉𝐴       (2.1) 

The above relation is not linear because CVA is not additive for individual transactions due to 

the mitigation of credit risk through netting and collateralization. Netting is a clause in OTC 

derivative contracts which states that if a counterparty defaults on one contract with a company, 

it defaults on all outstanding contracts with the specific company. Collateralization is an 

agreement which typically states that: the contracts between a financial institution and a 

company should be valued periodically and if the total value is higher than the specified 

threshold, the collateral posted should be equal to the difference between the value and the 

threshold (Hull, 2009: 502-503). 
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Under certain simplifying assumptions; the institution cannot default, risk-free valuation is 

possible and the probability of default and exposure are independent, Gregory (2012a) derives 

the following equation for CVA: 

 𝐶𝑉𝐴 ≈ (1 − 𝑅𝑒𝑐)∑ 𝐷𝐹(𝑡𝑖)𝐸𝐸(𝑡𝑖)𝑃𝐷(𝑡𝑖−1, 𝑡𝑖)
𝑚
𝑖=1       (2.2) 

Where (1 − 𝑅𝑒𝑐) is the loss given default, 𝐷𝐹 is the relevant risk-free discount factor, 𝐸𝐸 is the 

expected exposure for the relevant dates and 𝑃𝐷 is the marginal default probability between the 

relevant dates (Gregory, 2012a: 243). 

IFRS 13, which is a set of international accounting standards regarding the reporting of financial 

instruments and transactions, requires that CCR be incorporated into derivative valuations, 

which are credit and debit valuation adjustments for derivatives. The accounting literature does 

not prescribe which methods should be used for the quantification of these adjustments and 

therefore various methods are applied in practice, which are influenced by factors such as cost 

and availability of technology and data, number of contracts and credit risk mitigation (Ernst & 

Young, 2014). It is also required that the use of observable data should be maximised, as fair 

value is a market based measurement. This implies that the use of current credit spreads 

observed in the market as a source of credit risk data, rather than historical data, is ranked 

higher.  

Credit default swap (CDS) spreads provide a good indication of the counterparty’s 

creditworthiness from the market participants’ point of view, but CDS spreads are not always 

available to smaller companies and other observable indicators of creditworthiness like publicly 

traded debt should be used. In case of absence of observable indicators, a combination of 

factors can be used for indication of creditworthiness for CVA quantification. All selection basis 

of the input and all assumptions made should be documented as part of the analysis according 

to IFRS 13 (Ernst & Young, 2014). 

2.3 DEFAULT PROBABILITIES  

The research on estimating default probabilities originated with the development of theory for 

the valuation of bonds with a significant probability of default. It can be categorised into two 

different classes of models based on different frameworks; structural models and reduced form 

models (Arora et al, 2005). 

For investment grade bonds it is typical that default probabilities are an increasing function of 

time. The reasoning behind this is that initially the issuer is regarded as creditworthy, but as 

time increases the creditworthiness declines because of the possibility of a downfall in financial 

health. For lower credit rating the converse is true, because the issuer’s financial health is 
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initially questionable but as time passes and the issuer survives it shows prospects of an 

improvement of financial health (Hull, 2009: 420).  

2.3.1 Real World vs Risk Neutral 

There is differentiation between real-world or historical default probabilities and risk neutral 

default probabilities. Real world default probabilities are obtained from historical data analysis of 

actual defaults and published by rating agencies, whereas risk neutral default probabilities are 

inferred from market data. Risk neutral default probabilities are so called because of the 

assumption that expected default losses can be discounted at the risk free rate under the risk 

neutral valuation principle (Hull, 2009: 496-497). There is no contradiction between what the two 

values represent but they have different applications.  

Many empirical studies suggest that the difference between spreads on corporate bonds and 

the part of the spread that can be seen as compensation for default is significant, where with 

risk-neutral default probabilities the entire spreads is seen as compensation for default. 

Hull, Predescu and White (2004) referred to Altman (1989) being one the first to note the 

difference between historical default data and corporate bond spreads. Elton (2001), Haung and 

Haung (2002) and Amato (2003) are some of the studies done on the topic which conclude that 

together with the actual/historical default probability there is a default risk premium, liquidity 

premium as well as a tax premium that accounts for the credit spread. Hull et al (2004) also 

referred to systematic risk contributing to the excess return, noting that the default of bonds do 

not occur independently. This can be seen when comparing default probabilities in different time 

periods, showing that there are periods of time when it is low and periods where it is high.  

Gregory (2012a: 198) describes risk-neutral default probabilities as a reflection of the market 

price of default risk rather than estimates of actual default probabilities. Risk neutral 

probabilities, observed from credit spreads in the market are used for the valuation of credit 

derivatives where real-world default probabilities are relevant for assessments of risk like bank 

capital requirements (Hull et al, 2004: 1). Therefore risk neutral default probabilities would be 

used for calculations of CVA.  

2.3.2 Structural Models  

The earliest approaches to modelling default and credit risk were based on Black-Scholes 

option pricing methodology. Merton (1974) recognised that the Black-Scholes model’s approach 

could be used for corporate liability valuation, therefore linking default probability to the 

counterparty’s asset value. An equation used for valuation was developed and applied to 

corporate debt to obtain a formula for the risk structure of interest rates, where ‘risk’ is defined 

as gains or losses due to changes in default probability, which is in essence the term structure 

of credit spreads. 
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The risk premium 𝑅(𝜏) − 𝑟, defined as the risk structure of interest rates developed by Merton 

(1974) is: 

𝑅(𝜏) − 𝑟 =
−1

𝜏
𝑙𝑜𝑔 {𝛷[ℎ2(𝑑, 𝜎

2𝜏)] +
1

𝑑
𝛷[ℎ1(𝑑, 𝜎

2𝜏)]}     (2.3) 

Where 𝑅(𝜏) is the yield to maturity of the zero-coupon debt issue with value 𝐹 and face value 𝐵; 

𝑒−𝑅(𝜏)𝜏 =  𝐹[𝑉, 𝜏]/𝐵 and 𝑟 is the risk-free rate. 

The above equation was developed from the value of the bond 𝐹. Assuming the firm’s value 𝑉 

follows the stochastic process 𝑑𝑉 = (𝛼𝑉 − 𝐶)𝑑𝑡 + 𝜎𝑉𝑑𝑧, 𝐵 is the amount owed to the 

bondholders at time 𝑇 and 𝜏 is the time to maturity. The formula for 𝐹: 

𝐹[𝑉, 𝜏] = 𝐵𝑒−𝑟𝜏 {𝛷[ℎ2(𝑑, 𝜎
2𝜏)] +

1

𝑑
𝛷[ℎ1(𝑑, 𝜎

2𝜏)]}       

Where 𝑑 = 𝐵𝑒−𝑟𝜏/𝑉, 

ℎ1(𝑑, 𝜎
2𝜏) = − [

1

2
𝜎2𝜏 − log(𝑑)] /𝜎√𝜏 and 

ℎ2(𝑑, 𝜎
2𝜏) = − [

1

2
𝜎2𝜏 + log(𝑑)] /𝜎√𝜏. 

Equation (2.3) is dependent on the firm’s volatility 𝜎 and 𝑑 = 𝐵𝑒−𝑟𝜏/𝑉, which can be seen as the 

debt-to-firm value or leverage ratio, where the debt is valued at 𝑟, the riskless rate. It is therefore 

a biased estimate of the actual leverage ratio, which would be lower.  

Default probabilities can then be inferred from the Merton (1974) model. Default will occur if at 

time 𝑇 the firm’s value is less than what is owed to the bondholders, thus 𝑉(𝑇) < 𝐵 and the 

probability of default can be obtained as follows from the underlying Black Scholes assumptions 

that the Merton Model is based on (Frey, 2010:16). Where 𝜇 and 𝜎 refer to the mean and 

volatility rates of the stochastic process of the firms value 𝑉; 𝑑𝑉 = 𝜇𝑉𝑑𝑡 + 𝜎𝑉𝑑𝑧. 

𝑃(𝑉(𝑇) < 𝐵) = 𝛷 [
ln(

𝐵

𝑉(0)
)−(𝜇−

1

2
𝜎2)𝑇

𝜎√𝑇
]       (2.4) 

The framework of Merton (1974) set the basis for many models and studies. One of which, 

Delianedis and Geske (1998), highlighted the importance of default probabilities to the credit 

markets, showing that risk neutral default probabilities serve as upper bounds to estimates of 

historical default probabilities and contain credit rating transition information. This class of 

models model the asset and liability structure of the counterparty and infer default probabilities 

from those models. These structural form models addressed qualitative aspects of pricing credit 

risk, but had difficulty with its practical implementation. 
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Moody’s KMV extended the Merton approach and relaxed some of the assumptions for better 

empirical performance (Frey, 2010: 21) with the aim of measuring default by producing 1 year 

default probabilities defined as expected default frequency (EDF). The model is also extended 

to value corporate securities and produces robust predictions of the credit spreads on said 

securities (Arora et al, 2005). 

𝐸𝐷𝐹𝑀𝑒𝑟𝑡𝑜𝑛 = 1 − 𝛷 [
ln𝑉(0)−ln𝐵+(𝜇−

1

2
𝜎2)

𝜎
]      (2.5) 

Where 𝑉 is determined from the firm’s equity value using Merton’s model and the volatility of the 

assets is denoted by 𝜎, determined from the firm’s equity data.  

2.3.3 Reduced Form Models 

The above mentioned structural models were difficult to implement practically and an 

alternative, simpler approach was sought after and developed. This was known as the reduced 

form approach, where bankruptcy was not explicitly dependent on the underlying assets value 

of the counterparty. With this class of models, default was modelled under the assumption that 

at each instant there is some probability that a bond could default; default is often seen as a 

hazard-rate process. These models were more mathematically manageable than structural 

models, making it easier to implement practically (Duffee, 1999: 198).  

An example of such a reduced form model is the model developed by Jarrow et al (1997). It 

incorporated credit quality as an indicator of default likelihood of the counterparty, more 

explicitly using the firm’s credit rating as a measure of the credit quality of the firm for modelling 

the term structure of credit risk spreads. In this model, bankruptcy is characterised as a Markov 

process independent of the default free term structure. The time-homogenous Markov chain, 

with state space representing 𝐾 different credit classes specified by transition matrix 𝑄, 

represents the default time. 

 𝑄 =

(

 
 

𝑞11 𝑞12 ⋯ 𝑞1𝐾
𝑞21 𝑞22 … 𝑞2𝐾
⋮ ⋮ ⋮

𝑞𝐾−1,1 𝑞𝐾−1,2 ⋯ 𝑞𝐾−1,𝐾
0 0 ⋯ 1 )

 
 

       (2.6) 

The transition probability from time t to t+1 is denoted by 𝑞𝑖𝑗(𝑡, 𝑡 + 1) can be estimated by the 

equivalent martingale probabilities when no arbitrage and complete markets are assumed and 

the transition probability matrix follows 

𝑄̃𝑡,𝑡+1 =

(

 
 

𝑞̃11(𝑡, 𝑡 + 1) 𝑞̃12(𝑡, 𝑡 + 1)  ⋯ 𝑞̃1𝐾(𝑡, 𝑡 + 1) 
𝑞̃21(𝑡, 𝑡 + 1) 𝑞̃22(𝑡, 𝑡 + 1) … 𝑞̃2𝐾(𝑡, 𝑡 + 1) 

⋮ ⋮ ⋮
𝑞̃𝐾−1,1(𝑡, 𝑡 + 1) 𝑞̃𝐾−1,2(𝑡, 𝑡 + 1) ⋯ 𝑄̃𝐾−1,𝐾(𝑡, 𝑡 + 1) 

0 0 ⋯ 1 )

 
 

   (2.7) 
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The martingale probabilities then depend on the history of the process up until time t, thus the 

process does not have to be Markov. The probabilities can be written as 𝑞̃𝑖𝑗(𝑡, 𝑡 + 1) = 𝜋𝑖(𝑡)𝑞𝑖𝑗, 

where  𝜋𝑖(𝑡) is a function of time, such that satisfies the transition probability conditions. The 

interpretation of 𝜋𝑖(𝑡) is, it is the risk premium on debt issues of the specific credit class. Now 

the 𝑛-step transition probability matrix is obtained by taking the product; 𝑄̃0,𝑛 = 𝑄̃0,1𝑄̃1,2… 𝑄̃𝑛−1,𝑛. 

The probability of default after time 𝑇, that is 𝑄̃𝑡(𝜏
∗ > 𝑇) can now be calculated from this 

structure. If the firm is in state 𝑖 at time 𝑡 and 𝜏∗ is the time that the process reaches state 𝐾, 

which represents bankruptcy, the probability is: 

𝑄̃𝑡(𝜏
∗ > 𝑇) = ∑ 𝑞̃𝑖𝑗(𝑡, 𝑇)𝑗≠𝐾 = 1 − 𝑞̃𝑖𝐾(𝑡, 𝑇)       (2.8) 

Duffie and Singleton (1999) introduced a new approach to modelling defaultable bonds’ term 

structures; losses at default were parameterised in terms of the reduction in market value at the 

occurrence of default. Duffee (1999) modelled default probability as a translated square root 

diffusion process, allowing for correlation with default free interest rates and followed the 

framework of Duffie and Singleton (1999) to test whether reduced models could price credit risk 

accurately. It was found that the model could explain the corporate bond yield data well but 

could not explain all fluctuations and as the credit quality changed parameter instability was 

found. 

Hull and White (2000) developed a reduced form model for the valuation of credit default swaps 

which included estimation of default probabilities of a specific reference entity. They defined the 

difference between the value of a corporate bond and a similar Treasury bond as the present 

value of the cost of default. This relationship was then used to infer default probabilities by 

calculating the present value of a number of different bonds issued by the entity and making an 

assumption about recovery. The inference can be described by the following equation: 

 𝑃𝑉(𝑐𝑜𝑠𝑡 𝑜𝑓 𝑑𝑒𝑓𝑎𝑢𝑙𝑡) =  𝑉(𝑡). 𝑃𝐷. 𝑒−𝑟𝑡       (2.9) 

Where 𝑉(𝑡) denotes the loss incurred at time 𝑡, 𝑟 is the corresponding yield of the Treasury 

bond and 𝑃𝐷 denotes the probability of default. 

Hull et al (2004) examined credit spreads on corporate bonds and the difference between real 

world default intensities and the risk neutral default intensities implied from bond prices. Default 

was governed by Poisson process with constant default intensity or hazard rate (2.10). The 

default intensity used in the study was the excess corporate bond yield as a fraction of loss 

given default (1 − 𝑅) as an approximation (2.11). The underlying idea under the default intensity 

estimate is that excess return (spread) is compensation for the cost of default. Gregory (2012a) 

provides theoretical justification for this default intensity approximation which can be found in 

Appendix B. 
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𝐹(𝑢) = 1 − exp [−ℎ𝑢]          (2.10) 

Where ℎ ≈
𝑆𝑝𝑟𝑒𝑎𝑑

1−𝑅
          (2.11) 

Substituting the approximation of the hazard rate (2.10) into (2.9) then yields the following 

equation: 

 𝐹(𝑢) = 1 − exp [−
𝑆𝑝𝑟𝑒𝑎𝑑

1−𝑅
𝑢]         (2.12) 

Equation (2.11) represents the cumulative default probability over time period 𝑢. The marginal 

default probability applicable for the period of time from 𝑡𝑖−1 to 𝑡𝑖, which would be used for 

calculations of CVA then follows, 

𝑞(𝑡𝑖−1, 𝑡𝑖) ≈ exp [−
𝑆𝑝𝑟𝑒𝑎𝑑𝑡𝑖−1

1−𝑅
𝑡𝑖−1] − exp [−

𝑆𝑝𝑟𝑒𝑎𝑑𝑡𝑖
1−𝑅

𝑡𝑖]     (2.13) 

The above approximation is found by taking the difference between the cumulative default 

probabilities at times 𝑡𝑖−1 and 𝑡𝑖 and is specified as such under Basel III for the calculation of 

CVA. The approximation however, does not take the credit spread curve shape into account 

and the more curved the shape the worse the approximation becomes (Gregory, 2012a: 206). 

2.4  CREDIT SPREADS 

2.4.1 Credit Default Swap Spreads 

The benchmark risk free rate used by participants in credit markets can be estimated from the 

CDS market (Hull, 2009: 494), but the CDS market data is complex and not readily available. It 

is possible to show that a position in a fixed rate bond and interest rate swap is equivalent to a 

CDS position as shown by Duffie (1998). An asset swap is a derivative which can be seen as a 

portfolio consisting of a fixed rate bond and a fixed paying interest rate swap. Markets for fixed 

rate bonds have sometimes, not been as liquid as the markets for corresponding asset swaps 

and therefore asset swap spreads are often used for pricing default swaps. Duffie (1998) shows 

how asset swap spreads together with default free rates can be used to estimate default swap 

spreads.  

Suppose the asset swap spread on the default-free floating rate is quoted at 𝑆̂, the fixed rate on 

the underlying bond is 𝐶  and the default-free swap rate is 𝐶∗. Therefore the fixed swap rate on 

the underlying interest rate swap is 𝐶 − 𝑆̂. The fixed rate spread  𝐹 over the default-free coupon 

rate of a bond that has the same credit quality as the underlying bond can now be determined. It 

is calculated from the price of a portfolio consisting of the asset swap and a short position in a 

portfolio including a fixed rate bond with the same credit quality as the underlying bond of the 

asset swap and an at-market interest rate swap. The worth of this portfolio is, when the price of 

the defaultable annuity is 𝐴 and the default-free annuity with the same maturity: 𝐴∗, 
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1 − 1 = 0 = 𝐴(𝐶 − 𝐹 + 𝐶∗) + 𝐴∗(𝐶∗ − 𝐶 + 𝑆̂ )      (2.14) 

From which the value of the fixed rate spread 𝐹 follows: 

𝐹 = 𝐶 − 𝐶∗ −
𝐴∗

𝐴
(𝐶 − 𝑆̂ − 𝐶∗)         (2.15) 

This par fixed rate spread 𝐹 is now approximately the same as the par floating rate spread 𝑆, 

which is considered the basis for the default-swap spread. Therefore the par asset-swap spread 

is approximately equal to the default-swap spread 𝑆. 

The above mentioned relationship implies that using bond market data should give a similar 

spread to the spreads obtained from the CDS market, although the relationship is imperfect due 

to certain factors; the wrong-way risk of CDSs, fixed rate bonds often trade above and below 

par and CDSs are indexed to the par value of a bond, accrued interest is not paid in the event of 

default, but CDSs make provision for accrued interest and other further technicalities 

(Gregory, 2012a: 215). 

Spreads on corporate bonds, which is the difference between yields on corporate bonds and 

government bonds or treasuries which are presumed to be free of default risk, are generally 

interpreted as compensation for credit risk. Therefore corporate bond spreads contain 

information on the possibility and likelihood of default of the counterparty. However, as 

mentioned before, many empirical studies have shown that actual default risk only accounts for 

a portion of the credit spread. 

2.4.2 Term Structure 

There is extensive empirical research done on the term structure of credit spreads on corporate 

bonds and many are studies done on constructing credit spreads from historical default 

probabilities published by rating agencies. A specific area of interest is the shape of the credit 

spread term structure. Altman (1989) also showed that as the credit rating declined, the higher 

the excess return on the corporate bonds was. 

The Markov model of Jarrow et al (1997) estimated credit spreads and found upward sloping 

credit spreads for investment grade bonds for short to medium term maturities. Although there 

were significant differences between the slope of the credit spreads for the different rating 

classes, with the slope increasing as the credit quality decreases. 

Fons (1994) also found the general consensus that issuers with higher credit quality have 

narrower credit spreads that widen with maturity while lower rated issuers have wider credit 

spreads that become narrower with longer maturities. 
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Altman (1989), Fons (1994) and Jarrow et al (1997) all found that for investment grade 

securities, over short to medium term maturities, the credit spread is upward sloping. For 

speculative grade securities however, the credit spread tends to be downward sloping or 

humped but there are still contradicting results from different models (Bohn, 1999: 1). 

Bohn (1999) conducted a study regarding the term structure of credit spreads for low credit 

quality bonds in response to the conflicting results and found downward sloping and humped 

shaped term structures for low credit quality bonds. 

The slope and shape of the credit spread tends to differ as credit quality decreases. In the 

Merton (1974) framework the determinant of the slope is the estimated leverage ratio which 

would lead to different slopes for different credit classes.  

Joint estimation approach was introduced by Houweling et al (2001) because simple estimation 

procedures could lead to twisting credit spread curves for different markets or peer comparisons 

which are not realistic and causes complications when used in financial models. They find 

smoother curves when using this joint estimation method as opposed to traditional methods. 

Jankowitsch and Pichler (2004) also considered a different approach of credit spread 

estimation, instead of the subtracting a risk-free term structure from the risky term structure, 

when different markets are compared. 

Benzschawel and Assing (2012) used historical default probabilities and added a risk premium 

to construct credit spreads and found upward sloping term structures for short maturity bonds 

for all credit classes. 

2.4.3 Interpolation and Extrapolation 

Various methods are used for the interpolation and extrapolation of observed credit spreads but 

the use of fitting parametric curves and polynomial splines seems to be common practice. 

Nelson and Siegel (1987) approach to fitting a parametric curve and using regression to 

estimate the necessary parameters is used for yield curve modelling. It is a simple yet 

parsimonious model (2.3) that is flexible enough to accommodate different curve shapes and is 

therefore useful for credit spread modelling. 

𝑟(𝑡) = 𝛽0 + 𝛽1 [
1−exp(−

𝑡

𝜏
)

𝑡

𝜏

] + 𝛽2 [
1−exp(−

𝑡

𝜏
)

𝑡

𝜏

− exp (−
𝑡

𝜏
)]    (2.16) 

A cubic spline is a piecewise function fitting a third degree polynomial (2.4) between two points 

in the data set; 𝑥𝑖  and 𝑥𝑖+1 using the following equation: 

𝑠𝑖(𝑥) =  𝑎𝑖(𝑥 − 𝑥𝑖)
3 + 𝑏𝑖(𝑥 − 𝑥𝑖)

2 + 𝑐𝑖(𝑥 − 𝑥𝑖) + 𝑑𝑖     (2.17) 
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Cubic- and polynomial splines in general are useful for data sets where the space between 

consecutive data points is equal and do not deviate from the expected shape of the curve as the 

obtained curve goes through all the data points.   

Hagan and West (2006) investigated different interpolation methods for curve construction used 

in financial markets. Raw interpolation (2.5) was one of the methods. 

𝑟(𝜏) =
𝜏−𝑡𝑖

𝑡𝑖+1−𝑡𝑖

𝑡𝑖+1

𝜏
𝑟𝑖+1 +

𝑡𝑖+1−𝜏

𝑡𝑖+1−𝑡𝑖

𝑡𝑖

𝜏
𝑟𝑖       (2.18) 

Orr (1997) fit the following curve, where t denotes the term of the yield, for extrapolating yield 

predictions to fit entire yield curves and performed regression analysis on the sets of 

parameters generated for different months to determine the relationship between short and 

medium term yields. 

𝑦𝑡 = (𝑎1 + 𝑎2𝑡). e
𝑎3t  +  𝑎4        (2.19) 

2.4.4 Callable bonds and Floating rate bonds 

A callable bond is a bond where the issuer has an option to not repay the face value of the bond 

at a predetermined value before the maturity of the bond. Bonds with embedded call options 

have different yield term structures than that of non-callable bonds. The spreads of callable 

corporate bond yields over non-callable Treasury bond yields depends on the callability of the 

bond (Duffee, 1998: 2225).  

Callable bonds also have negative convexity at par, while non-callable bonds always have 

positive convexity (Finance Train, 2014). Positive convexity implies that price increases as a 

result of falling bond yields are greater than price decreases which are caused by a rise in bond 

yields. In the previously mentioned models in section 2.3, for bond valuation and credit spread 

construction, callable bonds were considered separately. Duffie and Singleton (1999) 

distinguished between the valuation of callable and non-callable bonds, this is done because 

assumptions have to be made about the issuer’s call policy. Duffee (1996) as well as Duffee 

(1999) excluded callable bonds from the empirical study done on corporate yield spreads. The 

Merton (1974) model was also developed on the basis that the debt or face value of the bond 

has to be paid, but can be extended for the case of callable bonds. 

Floating rate bonds are bonds for which the coupons are not fixed but rather refixed with 

reference to a specific benchmark (Rajwade, 2005: 12).  The valuation of floating rate bonds is 

therefore more mathematically complex than the valuation of fixed rate bonds, because of the 

unknown value of the coupons. The floating rate is defined as a spread over some reference 

rate and it is especially complicated when the desired spread differs from the contracted spread 

(Rajwade, 2005: 12).  
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In many empirical studies the only bonds with no variation in coupon payments or maturity and 

without imbedded options are considered, such as Duffee (1999), Elton et al (2001), Bedendo, 

Cathcart and El-Jahel (2004). These are known as straight bonds or plain vanilla bonds. 

2.6  SOUTH AFRICAN CONTEXT 

Historically South African companies in general do not have high default probabilities which 

could be a reflection of South African firms not making use of financial leverage as much as 

international firms (Holman, Van Breda, and Correia, 2011: 1).  Therefore credit risk models 

developed from international data might deliver different results when applied to South African 

data.  

2.6.1 Credit Ratings 

Corporate bonds need to be assessed in term of creditworthiness unlike treasury bonds that 

have government guarantee and are considered risk-free. Corporate debt ratings are thus an 

assessment of the ability of the issuer to meet its obligations, in term of interest and principal 

payments, and indicate the level of default risk corresponding to the corporate debt (Ndlovu, 

2002: 50). 

Bonds are rated by independent, internationally recognised agencies such as Standard & Poor 

(S&P), Fitch and Moody’s and Bond Exchange of South Africa (BESA) support ratings from 

these agencies. The highest credit rating is AAA, which indicates high credit quality and 

financial health, whereas the lowest rating, C, indicates poor credit quality. Further the ratings 

are also separated into two categories; investment grade, which are ratings BBB or Baa for 

Moody’s and above, and speculative grade, which are ratings BB or Ba and lower (Ndlovu, 

2002: 51-52). 

Moody’s assign ratings based on forward looking opinions of the credit risk associated with 

issuers and financial obligations (Table 2.1). They append numerical modifiers 1, 2 and 3 to 

each rating to indicate the rank of the obligation within the rating classification, with 1 indicating 

the higher end, 2 the mid-range and 3 the lower end. These modifiers are equivalent to the + an 

- that are appended to S&P and Fitch ratings. 

Moody’s also have national long term ratings which are an indication of the creditworthiness of 

the issuer or obligation relative to others within the given country (Table 2.2). The last two 

letters indicate the country of the issuer i.e. Aaa.za for South Africa. 

 

  



15 
 

Table 2.1: Moody’s Global scale ratings descriptions 

Source: Moody’s Investors Service 2014:5 

Table 2.2: Moody’s National scale ratings descriptions 

National Long Term Rating Scale 

Aaa.n  
 

Issuers or issues rated Aaa.n demonstrate the strongest creditworthiness relative 
to other domestic issuers. 

Aa.n Issuers or issues rated Aa.n demonstrate very strong creditworthiness relative to 
other domestic issuers. 

A.n Issuers or issues rated A.n present above-average creditworthiness relative to 
other domestic issuers. 

Baa.n Issuers or issues rated Baa.n represent average creditworthiness relative to other 
domestic issuers. 

Ba.n Issuers or issues rated Ba.n demonstrate below-average creditworthiness relative 
to other domestic issuers. 

B.n Issuers or issues rated B.n demonstrate weak creditworthiness relative to other 
domestic issuers. 

Caa.n Issuers or issues rated Caa.n demonstrate very weak creditworthiness relative to 
other domestic issuers. 

Ca.n Issuers or issues rated Ca.n demonstrate extremely weak creditworthiness 
relative to other domestic issuers. 

C.n Issuers or issues rated C.n demonstrate the weakest creditworthiness relative to 
other domestic issuers. 

Source: Moody’s Investors Service 2014:12 

2.6.2 Credit Risk Models  

In this section a summary of the application of credit risk models in a South African context will 

be given. The same methodology will not be applied but the mentioned studies produced 

important results.  

Smit, Swart and Van Niekerk (2003) applied the Merton (1974) model to South African data to 

test the model empirically in a South African context. Twenty investment grade companies were 

investigated with ratings AAA through BBB. The following equations were used for value of a 

Global Long-Term Rating Scale 

Aaa Obligations rated Aaa are judged to be of the highest quality, subject to the lowest 
level of credit risk. 

Aa Obligations rated Aa are judged to be of high quality and are subject to very low 
credit risk. 

A Obligations rated A are judged to be upper-medium grade and are subject to low 
credit risk. 

Baa Obligations rated Baa are judged to be medium-grade and subject to moderate 
credit risk and as such may possess certain speculative characteristics. 

Ba Obligations rated Ba are judged to be speculative and are subject to substantial 
credit risk. 

B Obligations rated B are considered speculative and are subject to high credit risk. 

Caa Obligations rated Caa are judged to be speculative of poor standing and are 
subject to very high credit risk. 

Ca Obligations rated Ca are highly speculative and are likely in, or very near, default, 
with some prospect of recovery of principal and interest. 

C Obligations rated C are the lowest rated and are typically in default, with little 
prospect for recovery of principal or interest. 
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risky bond 𝐷(𝑉, 𝜏), where 𝑉 refers to the value of the firm as in Merton’s model and follows the 

process 𝑑𝑉 = 𝛼(𝑉)𝑉𝑑𝑡 + 𝜎(𝑉)𝑉𝑑𝑧 and 𝐵 the face value of the bond.  

The equity value of the firm follows the process 𝑑𝐹 = 𝛼(𝐹)𝐹𝑑𝑡 + 𝜎(𝐹)𝐹𝑑𝑧 and because 𝐹 is a 

function of 𝑉 applying Itô’s lemma yields the following 

𝜎(𝐹)𝐹 = 𝜎(𝑉)𝑉
𝜕𝐹(𝑉,𝑡)

𝜕𝑉
          (2.20) 

The resulting risk premium 𝑅(𝜏) − 𝑟 is obtained by setting 𝐷(𝑉, 𝜏) = 𝐵𝑒−𝑅(𝜏)𝜏, where 𝑅(𝜏) is the 

yield-to-maturity of the bond.  

𝐷(𝑉, 𝜏) = 𝐵𝑒−𝑟𝜏 [𝑁(ℎ2) +
𝑉𝑒𝑟𝜏

𝐵
𝑁(ℎ1)]       (2.21) 

 𝑅(𝜏) − 𝑟 = −
1

𝜏
ln [𝑁(ℎ2) +

𝑉(𝜏)𝑒𝑟𝜏

𝐵
𝑁(ℎ1)]      (2.22) 

Where ℎ2 = −[
1

2
𝜎(𝑉)
2 𝜏 + ln (

𝐵𝑒−𝑟𝜏

𝑉
)] /𝜎(𝑉)√𝜏  

ℎ1 = −𝜎(𝑉)√𝜏 − ℎ2 

The above equations are dependent on the firm’s value 𝑉(𝜏) and its volatility 𝜎(𝑉), also the debt 

to be repaid 𝐵. The firm’s market value is not easily obtained because the market value of debt 

is usually unobservable (Smit et al, 2003: 43). 𝐹(𝜏), the equity value of the firm is however 

observable and 𝜎(𝐹) can be estimated. This is then used to determine 𝑉(𝜏) and 𝜎(𝑉) in terms of 

𝐹(𝜏), 𝜎(𝐹) and 𝐵 using equation (2.20).  

The probability of default can be inferred from equation (2.21) as follows, as well as the 

recovery rate, 𝛿, in the event of default:   

𝑃(𝑉(𝑇) < 𝐵) = 𝑁(−ℎ2)        (2.23) 

𝛿 =
𝑉(𝜏)𝑁(ℎ1)

𝐵𝑒𝑟𝜏𝑁(−ℎ2)
          (2.24) 

The actual debt of the companies was used in the analysis and financing of the firm’s debt was 

observed at one year, three year and five year maturities. 

Smit et al (2003) then also applied the Shimko, Tejima and van Deventer (STvD) model to the 

same twenty companies. The STvD model is a generalised Merton model that allows for 

stochastically varying interest rates. In this specific model it is assumed that short-term riskless 

interest rate follows a Vasicek process, 𝑑𝑟 = 𝑘(𝛾 − 𝑟)𝑑𝑡 + 𝜎(𝑟)𝑑𝑧̃ with 𝑑𝑧𝑑𝑧̃ = 𝜌𝑑𝑡. 

Under conditions of the StvD model the price of a risky bond and the value of the firm’s debt can 

be obtained using the following equations: 
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𝑃(𝜏) = 𝑒𝑥𝑝 [
1−𝑒−𝑘𝜏

𝑘
(𝛾 −

1

2

𝜎(𝑟)
2

𝑘2
− 𝑟) − 𝜏 (𝛾 −

1

2

𝜎(𝑟)
2

𝑘2
) −

𝜎(𝑟)
2

4𝑘3
(1 − 𝑒−𝑘𝜏)

2
]   (2.25) 

 𝐷(𝜏) = 𝑉 − 𝑁(ℎ1) + 𝐵𝑃(𝜏)𝑁(ℎ2)        (2.26) 

Where ℎ1 =
1

√𝛴
[ln

𝑉

𝑃(𝜏)𝐵
+
1

2
𝛴] 

 ℎ2 = ℎ1 − √𝛴  

 𝛴 =  𝜏 (𝜎(𝑉)
2 +

𝜎(𝑟)
2

𝑘2
+
2𝜌𝜎(𝑉)𝜎(𝑟)

𝑘
) +

𝑒−𝑘𝜏−1

𝑘3
(2𝜎(𝑟)

2 + 2𝜌𝜎(𝑉)𝜎(𝑟)𝑘) −
𝜎(𝑟)
2

2𝑘3
(𝑒−2𝑘𝜏 − 1) 

Now considering the debt function 𝐷(𝜏) = 𝐵𝑒−𝑅(𝜏)𝜏 and 𝑃(𝜏) = 𝑒−𝑟(𝜏)𝜏, the credit spread follows 

from substitution into equation (2.27): 

𝑅(𝜏) − 𝑟(𝜏) = −
1

𝜏
𝑙𝑛
𝑃𝐵

𝐷
         (2.27) 

Table 2.3: Credit spreads obtained from Merton and Shimko models 

Company Rating Volatility 

of 

assets 

Leverage 

ratio 

Credit Spread (basis points) 

I year 3 year 5 year 

Merton Shimko Merton Shimko Difference Merton Shimko Difference 

A AAA 32% 25% 0,0 0,0 7 11 4 28 43 15 

B* AA+ 19% 37% 0,0 0,0 1 3 2 6 15 9 

C AA 27% 24% 0,0 0,0 2 3 2 11 19 9 

D* AA 5% 84% 0,2 1,1 7 37 31 18 73 55 

E* AA 4% 87% 0,2 1,9 7 44 37 18 80 61 

F* AA 7% 82% 0,4 1,7 12 43 31 29 84 54 

G* AA 3% 91% 0,2 3,6 6 59 53 15 91 76 

H AA- 17% 41% 0,0 0,0 0 2 1 3 11 8 

I AA- 20% 46% 0,0 0,0 5 11 6 19 38 19 

J A+ 21% 37% 0,0 0,0 2 4 2 10 21 11 

K A+ 29% 38% 0,6 0,9 33 46 13 85 115 30 

L* A+ 3% 93% 0,4 6,8 7 69 62 17 100 83 

M* A+ 7% 84% 0,7 2,5 15 51 36 36 95 58 

N* A- 4% 89% 0,4 2,8 8 54 46 21 90 69 

O A- 24% 36% 0,0 0,0 6 11 5 24 41 17 

P A- 41% 13% 0,0 0,0 3 4 2 18 27 9 

Q* BBB+ 30% 49% 16,0 19,1 160 191 31 297 346 49 

R* BBB 15% 69% 1,6 2,7 34 59 26 77 123 46 

S* BBB 18% 67% 7,4 10,3 84 116 33 169 220 51 

T* BBB 22% 60% 9,8 12,7 108 139 31 211 260 49 

Source: Smit et al 2003:44 

The asterisk indicates the firms that are from the banking sector. It was found that the spreads 

generated from the Merton (1974) model was significantly lower than the credit spreads in 

South African market. These empirical results were expected because the assumptions 
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regarding interest rates could be seen as unrealistic and similar results were found by 

researchers in other countries when applying the model.  

Using the STvD model with 𝜎(𝑟)= 5% and 𝜌=30%, credit spreads were obtained that compare 

better with the credit spreads in the South African bond market. They found that the model 

showed a more realistic response to asset volatilities and leverage ratios. The credit spreads 

from the different models are compared in Table 2.3. The study validates the use of credit risk 

models for valuation purposes in South Africa. 

Holman, et al (2011) investigated the Merton default probabilities’ correlation with issued ratings 

to determine whether the Merton (1974) model could be used to quantify credit risk for South 

African firms. It was specifically referred to South Africa’s history of default on listed debt that 

implies a firm’s effective default probability is zero, which is not theoretically plausible (Holman 

et al, 2011: 2). The top 42 non-financial companies in the All Share Index were included in the 

analysis. Financial firms were not included because of the difference in capital structure and 

default point, which is the threshold that triggers default, in comparison with industrialised firms. 

Liabilities of financial firms decrease as the firm nears default and the opposite occurs for non-

financial firms. The default point in Merton’s model is the face value of the bond, but in this 

analysis it is estimated as the average of the firm’s short and long term liabilities. 

The firms are assumed to have a domestic benchmark financing rate, such as 3M JIBAR for all 

financial instruments. It is assumed that firms rated AAA are financed at the 3M JIBAR rate and 

firms rated below BBB+ are financed at prime. The 1 year forward swap rate on 15 June 2007, 

9.62%, was used as forward indicator of the 3M JIBAR rate, this led to a spread of 3.38% and 

the historical average spread between 3M JIBAR and prime is 3.5%. These rates, which can be 

found in Table 2.4, were used as benchmark rates instead of the risk-free rate. There was also 

distinguished between base and worst case scenarios for the rates, with a 200 bps differential.  

Table 2.4: Benchmark rates used in Holman et al (2011) study 

Source: Holman et al 2011:7 

Default probabilities were estimated over a time horizon of one year and market value of the 

firm’s equity was calculated on 31 March 2007. The growth rate for the given firm’s equity was 

Base case Worst case = Base case + 2% 

Forward 

9.62% 

Spread 

0.68% 

Rate 

10.30% 

Forward 

9.62% 

Spread 

2.68% 

Rate 

12.30% 

AAA 0.68% 10.30% AAA 2.68% 12.30% 

AA 1.35% 10.97% AA 3.35% 12.97% 

A+ 2.03% 11.65% A+ 4.03% 13.65% 

A- 2.70% 12.32% A- 4.70% 14.32% 

BBB+ 3.38% 13.00% BBB+ 5.38% 15.00% 
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calculated using the CAPM model and for the estimation of volatility the GARCH(1,1) model 

was implemented. 

Default probabilities were then calculated for the base case and worst case scenarios and the 

firms were then ranked accordingly, with 1 being the most likely to default according the Merton 

model and 42 the least likely. These rankings were then compared to the ranking of the firms 

according to their published Moody’s or Fitch ratings (Table 2.5). The credit ratings were 

assigned rating scores as follows, Aaa=20, Aa1=19, Aa2=18, and so forth ending with Ca=1. No 

apparent relationship between the published ratings and default probabilities obtained using the 

Merton (1974) model was found.   

Two of the 42 companies for which the default probabilities were calculated were significantly 

higher than the rest of the companies and they were studied further in detail. They found that 

these two particular companies were highly leveraged and therefore the assets were closer to 

the default point relative to the other companies. This also highlights one of the flaws of the 

Merton model, which is that the security of outstanding debt is not taken into consideration and 

if a firm’s capital structure has high use of leverage it does not necessarily imply an indication of 

default. 

Table 2.5: Comparison of published rating rankings and Merton rankings 

Rated Firm Ticker Rating 
Rating Score 

(Moody’s/Fitch) 

Merton ranking 

(rated firms) 

Merton ranking 

(all firms) 

Anglogold ANG AA- 17 2 3 

Barloworld BAW AA- 17 4 5 

Bidvest BVT AA- 17 10 14 

Pretoria Port. Cem. PPC AA- 17 16 35 

BHP Billiton BIL A1 16 11 16 

Steinhoff Int. SHF A 15 6 7 

Anglo American plc AGL A2 15 15 34 

Anglo Platinum AMS A2 15 19 41 

Woolworths WHL A3 14 8 9 

Telkom TKG A3 14 13 28 

Imperial Holdings IPL Baa1 13 3 4 

Sasol SOL Baa1 13 5 6 

SA Breweries SAB Baa1 13 17 36 

Harmony Gold HAR BBB 12 9 10 

MTN Group MTN Baa3 11 7 8 

Mittal Steel MLA Baa3 11 12 25 

Sappi SAP Ba1 10 1 2 

Lonmin plc LON Ba3 8 14 31 

Edgars EDC B2 6 18 38 

Source: Holman et al 2011:18 
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Low correlation between the default probabilities and ratings was found, 𝑅2 = 0.09, and the 

results were contrary to what was expected, some of the higher rated firms exhibited higher 

default probabilities.  

The fact that South African firms are not highly leveraged is considered as a reason for the 

overall low default probabilities produced by the Merton model, as financial leverage is one of 

the factors of calculation for the default probabilities.  

It was concluded that the Merton (1974) model should only be used as a limited source of 

information regarding credit risk in South Africa.  

2.7 SUMMARY 

It can be seen that risk-neutral default probabilities are necessary for the quantification of CVA 

and there are various methods used for its estimation. The models can be separated into two 

categories, structural models and reduced form models. With structural models default is linked 

to the asset value of the firm or counterparty and Merton (1974) can be seen as the pioneer of 

these models. In reduced form models default is assumed to occur at any time and is not 

dependent on the firm or counterparty’s asset value. 

The term structure of credit spreads for investment grade bonds are generally upward sloping. 

Although credit spreads obtained from CDS data would give a more liquid, accurate perception 

of default likelihood, credit spreads can bond market data yields similar results and can be used 

for estimation of default probabilities. In many empirical studies only fixed-rate, non-callable 

bonds were used. 

The Merton model has been applied to South African data and produced results which imply 

that credit risk models can be applied in the South African market and provides useful inference 

for credit risk. In the following chapter the methodology followed for obtaining default 

probabilities for different rating classes from South African data will be outlined. 
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CHAPTER 3 

METHODOLOGY 

3.1 INTRODUCTION 

In this chapter methodology for estimating default probabilities using South African bond mark 

to market data will be given. The observed corporate bond credit spread data used for 

extrapolation to all unobservable maturities will be outlined. The methodology regarding the 

construction of the credit spread curves for different rating classes and calculation of the default 

probabilities using the obtained credit spreads will also be explained in detail, with reference to 

models and methods described in the previous chapter.  

3.2 DATA 

The month end bond mark to market data files for January 2014, February 2014 and March 

2014 were obtained from the Johannesburg Stock Exchange (JSE) as well as a listing of all the 

bonds in the market on 8 April 2014. The credit ratings on the bonds, however, were outdated 

and ratings for the listed South African bonds had to be obtained from rating agencies such as 

Moody’s, Standard & Poor or Fitch. Credit ratings were then obtained from Moody’s of all the 

listed South African bonds which there were ratings available for. ISIN codes of the bonds in the 

Moody’s list of ratings were then used to identify and relate the ratings to the bonds in the JSE 

mark to market files. 

Often in previous empirical research studies, as discussed in Chapter 2, only straight or plain 

vanilla bonds are considered and therefore bonds with callable options and floating rate 

coupons are excluded from this analysis. The excel file with all the listed South African bonds 

was filtered to obtain all the non-callable bonds with fixed coupons.  

A secondary comma delimited excel file was then created containing the listed bonds with 

observed spread values and national scale long term ratings of three different rating classes: 

Aa.za, A.za and Baa.za. Global long term ratings were ignored as there was only one rating 

class, Baa.  

3.3 CREDIT SPREAD MODELLING 

The credit ratings from Moody’s were used for modelling the credit spreads for the different long 

term credit ratings to the unobservable maturities. The raw data described above was read into 

a statistical computer package, R (R Development Core Team, 2014), and different data sets 

were created to categorise the observations into the three observed national scale long term 

rating classes, Aa.za, A.za and Baa.za.  
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Plotting the observed spreads as a function of maturity per rating class, it was clear that there 

were outliers, in terms of what was expected for the rating classes. For certain ratings some of 

the observed spreads were higher than that of the lower credit ratings’ spreads which is 

contrary to expectations; because lower credit ratings are expected to have higher credit 

spreads.   

If the curves constructed from parameter estimation using non-linear regression analyses 

included all the observations it would lead to twisting curves for the different rating classes. 

Therefore the following rule was used for identifying outliers. Outliers were defined as spreads 

higher than the average spread of the rating just below the given rating and lower than the 

average spread of the rating just above the given rating. For example A.za spreads were 

bounded by the average Baa.za spreads above and the average Aa.za spreads below. This 

example is illustrated in Figure 3.1 the original A.za data points are displayed with the upper 

bound, Baa.za average and lower bound, Aa.za average.   

 

Figure 3.1: Plot of upper and lower bounds for A.za rating class 

The outliers were then removed and if the data points left were insufficient to produce a 

regression model, data points within the range of the existing data points were added. Equation 

(2.18) was used for writing an R function that interpolates the spreads between the minimum 

and maximum maturities in the given data set and effectively adds two new interpolated 

observations.   
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The parametric curve (2.19) was used to execute the original non-linear regression analyses in 

R, but for some of the data sets the parameter estimates could not converge, which is 

sometimes a sign of over parameterisation and the curve was then simplified to the following: 

𝑠𝑡 = 𝑎1 + 𝑎2. e
𝑎3t          (3.1) 

Where 𝑡 denotes the time to maturity of the bond and st the basis point spread at 𝑡. For each of 

the rating classes a different set of optimised parameters {a1, a2, a3} were found and credit 

spreads for all unobservable maturities could now be extrapolated.  

After filtering the listed bonds and removing the outliers there were not enough data points to 

construct curves differentiating the ranks within the given rating classes, that is, Aa1.za, Aa2.za 

and Aa3.za ratings within the Aa.za rating class. In fact, there were only enough data points for 

the modelling of the Aa.za and A.za curves and only one Baa.za observation.  

According to the literature referred to in Chapter 2, the credit spread curves for investment 

grade rated bonds are all upward sloping with the lower credit quality spreads being higher than 

the higher credit quality spreads. For inference of the other curves, the curves that differ the 

assumption is made that the curves have the same overall slope and shape.  

The curves obtained using the non-linear regression parameter estimates are then used to 

construct curves that are proportionate to each other; as outlined in the following six points:  

i) The differences between the Aa.za and A.za curves and between the Baa.za and the A.za 

curves is averaged and used to construct the other curves using the Aa.za curve as the 

basis. Let D be defined as the above mentioned averaged difference.   

ii) The Aa.za curve obtained from the non-linear regression is used as the basis curve. The 

new A.za curve is then obtained by adding D to the Aa.za curve and so also the new Baa.za 

curve is obtained by adding D to the new A.za curve.  

iii) To differentiate the ranks within the rating class the above mentioned curves are assumed 

as the second ranking i.e. the Aa2.za, A2.za and Baa2.za curves.  

iv) The space between these second ranked curves are then divided equally to fit in the third 

ranking of the higher rating and the first ranking of the lower rating. For example between 

the Aa2.za and A2.za curves would be the A1.za curve followed by the Aa3.za curve.  

v) The Aa1.za curve is obtained by subtracting 
𝐷

3
 from the Aa2.za curve. The Baa3.za curve is 

obtained by adding 
𝐷

3
 to the Baa2.za curve. 

vi) In the instance that the Aa2.za curve is too low to fit the Aa1.za curve, the Aa.za curve 

obtained from the regression analysis is used as the Aa1.za curve, thus the curves in (iii) 

are then the first ranking, in (iv) the second and third ranking of the higher rating are then 
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added and (v) adds the Baa2.za curve by adding 
𝐷

3
 to the Baa1.za curve and Baa3.za by 

adding 
𝐷

3
 to Baa2.za. 

3.4 DEFAULT PROBABILTY CALCULATION 

The following formula, (2.12) which was used by Hull et al (2004) and is specified for calculating 

risk-neutral default probabilities by Gregory (2012a: 205), is then used for calculating the 

cumulative default probability for each of the different ratings and rankings within the rating 

classes. The credit spreads calculated in the previous section is used for the calculation. Where 

default is governed by a Poisson process with hazard rate ℎ that is approximated by ℎ ≈
𝑆𝑝𝑟𝑒𝑎𝑑

1−𝑅
.  

 𝐹(𝑢) = 1 − exp [−
𝑆𝑝𝑟𝑒𝑎𝑑

1−𝑅
𝑢]         (3.2) 

The justification and derivation of this formula can be found in Appendix B. 

The marginal default probability which is necessary for CVA calculation, which is specified 

under Basel III, can then be obtained approximately by taking the difference between the 

cumulative default probabilities calculated from (3.2) at the specified times, it follows: 

𝑞(𝑡𝑖−1, 𝑡𝑖) ≈ exp [−
𝑆𝑝𝑟𝑒𝑎𝑑𝑡𝑖−1

1−𝑅
𝑡𝑖−1] − exp [−

𝑆𝑝𝑟𝑒𝑎𝑑𝑡𝑖
1−𝑅

𝑡𝑖]     (3.3) 

3.5 SUMMARY 

South African bond mark to market data was used to obtain risk neutral default probability 

estimates. Firstly credit spread curves were constructed by fitting a parametric curve to the 

observed credit spreads in the bond market. The parameters for the curves are obtained 

through execution of non-linear regression analyses and inferences are made to differentiate 

between rankings within the different rating classes. The corresponding cumulative default 

probabilities were then calculated for the rating classes. These credit spread curves and 

corresponding default probabilities for different rating classes and rankings, obtained from 

observed credit spreads from the South African bond market, can be used for CVA calculations. 
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CHAPTER 4 

RESULTS 

4.1 INTRODUCTION 

This chapter contains the results obtained from applying the methodology described in 

Chapter 3 to construct credit spread curves for the different rating classes with differentiation 

between rankings within the rating classes. The credit spreads were then used for calculation of 

the default probability for different rating classes, also for different rankings in the rating classes.   

4.2 CREDIT SPREADS 

The parametric curves obtained from the output of the non-linear regression analysis and the 

curves constructed from it using the methodology discussed in Chapter 3 can be found in 

Figure 4.1. The plot on the left of Figure 4.1 is the curves constructed from the parameter 

estimates obtained from the non-linear regression analysis and the plot on the right is the 

proportionate curves obtained from using the differences and Aa.za curve as the basis curve, as 

discussed in Chapter 3.  

After the filtering of the mark to market data there was only one Baa.za data point and the non-

linear regression analysis was not executed. Therefore only Aa.za and A.za curves are 

displayed. When floating rate bonds are included there are more Baa.za rated bonds and Figure 

4.3 shows the output where the Baa.za curve is displayed as well.   

 

Figure 4.1: Plot of credit spreads for different rating classes 
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The curves that were obtained are in agreement with the literature on the term structure of 

investment grade credit spreads as discussed in Chapter 2. The curves are upward sloping and 

the higher ratings have flatter curves than the lower curves. The credit spreads also increase as 

the credit quality decreases.   

In Figure 4.2 the different ranks within the given rating class is displayed, from The Aa1.za 

curve to the Baa3.za curve obtained from the methodology described in Chapter 3 and the 

rating is appended to the second ranked curve i.e. Aa2.za, A2.za, Baa2.za.  

 

Figure 4.2: Credit spreads for different rankings within rating classes  

 

Figure 4.3: Credit spreads including floating rate bonds 
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4.3 DEFAULT PROBABILITIES 

The cumulative default probabilities were calculated using equation (3.2). Figure 4.4 is a plot of 

the cumulative default probability calculated for the different ratings using the spreads displayed 

in Figure 4.2.  

 

Figure 4.4: Cumulative default probabilities for different rating classes   

The plot of Figure 4.4 agrees with the expectation that the cumulative default probability is an 

increasing function of time, because marginal default probabilities are increasing over time. The 

probability of default is also higher for lower credit ratings as the literature states that the 

likelihood of default increases as the credit quality of the counterparty decreases. 

4.4 ROBUSTNESS TESTS 

The code was developed from the bond mark to market data file of 31 January 2014. The code 

was executed on the 28 February 2014 and 31 March 2014 data files and delivered similar 

results. The February results are displayed in Figures 4.7 and 4.8 and the March results are 

displayed in Figure 4.9 and 4.10. These results are expected as there is not significant variation 

in the observed credit spreads over the month to month basis. 
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Figure 4.5: Spreads for different rating classes as on 28 February 2014   

 

Figure 4.6: Cumulative default probabilities for different rating classes as on 28 February 

2014 
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Figure 4.7: Cumulative default probabilities for different rating classes as on 31 March 

2014 

 

Figure 4.8: Cumulative default probabilities for different rating classes as on 31 March 

2014 

Table 4.1 shows the credit spreads for months January, February and March and in Table 4.2 

the corresponding default probabilities are shown. There is not much variation in the credit 

spreads. The difference in the slope of the curves cause the February curves to be higher than 

the others in the beginning but as the maturity increases the spreads for March are higher. 
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Table 4.1: Credit Spreads for the three months’ datasets  

 
Aa.za A.za Baa.za 

t January February March January February March January February March 

0 51.23517 53.20082 45.844 177.1627 179.8441 175.9139 303.0903 306.4874 305.9838 

1 70.70551 72.36648 66.82447 196.6331 199.0098 196.8944 322.5606 325.653 326.9642 

2 86.64648 88.058 84.00182 212.574 214.7013 214.0717 338.5016 341.3445 344.1416 

3 99.69784 100.9051 98.06545 225.6254 227.5484 228.1353 351.553 354.1917 358.2052 

4 110.3834 111.4235 109.5798 236.311 238.0667 239.6497 362.2385 364.71 369.7196 

5 119.132 120.0352 119.0069 245.0595 246.6784 249.0768 370.9871 373.3217 379.1467 

6 126.2947 127.0858 126.7252 252.2223 253.7291 256.7951 378.1499 380.3724 386.865 

7 132.1591 132.8584 133.0444 258.0866 259.5017 263.1143 384.0142 386.1449 393.1842 

8 136.9604 137.5846 138.2181 262.888 264.2279 268.288 388.8155 390.8711 398.3579 

9 140.8914 141.4541 142.454 266.819 268.0973 272.5239 392.7465 394.7406 402.5938 

10 144.1098 144.6221 145.922 270.0374 271.2654 275.9919 395.965 397.9087 406.0618 

11 146.7448 147.2159 148.7614 272.6724 273.8592 278.8313 398.6 400.5025 408.9012 

12 148.9022 149.3395 151.0861 274.8298 275.9828 281.156 400.7574 402.6261 411.2259 

13 150.6685 151.0782 152.9894 276.5961 277.7215 283.0593 402.5237 404.3648 413.1292 

14 152.1147 152.5017 154.5477 278.0422 279.145 284.6176 403.9698 405.7883 414.6875 

15 153.2987 153.6672 155.8236 279.2262 280.3105 285.8935 405.1538 406.9537 415.9633 

16 154.268 154.6214 156.8681 280.1956 281.2647 286.938 406.1232 407.9079 417.0079 

 

Table 4.2: Default probabilities for the three months’ datasets 

 
Aa.za A.za Baa.za 

t January February March January February March January February March 

0 0 0 0 0 0 0 0 0 0 

1 1.171509 1.198864 1.107562 3.224099 3.262426 3.228313 5.234058 5.282888 5.303585 

2 2.846906 2.892606 2.761222 6.840585 6.906618 6.88708 10.67009 10.75471 10.83788 

3 4.862685 4.920097 4.785003 10.6682 10.75405 10.78024 16.11946 16.23005 16.39799 

4 7.094648 7.159045 7.044861 14.57579 14.67572 14.76572 21.45452 21.58383 21.84528 

5 9.450783 9.518909 9.441345 18.4714 18.58131 18.74388 26.59337 26.73604 27.09082 

6 11.86449 11.93419 11.90243 22.2928 22.4098 22.64733 31.48722 31.63932 32.08172 

7 14.28871 14.35861 14.37719 25.9997 26.12177 26.43249 36.11059 36.26921 36.79045 

8 16.69102 16.76033 16.83061 29.56763 29.69335 30.07293 40.45398 40.61696 41.20679 

9 19.04989 19.11818 19.2394 32.98331 33.11169 33.55435 44.51846 44.68416 45.33195 

10 21.35161 21.41874 21.5888 36.24116 36.37152 36.87079 48.31185 48.47902 49.17438 

11 23.58814 23.6541 23.87012 39.34083 39.47267 40.0219 51.84603 52.01369 52.74691 

12 25.75535 25.82026 26.07893 42.28537 42.41831 43.01101 55.13511 55.30248 56.06469 

13 27.85185 27.91586 28.21374 45.07994 45.21369 45.84367 58.19418 58.36061 59.14387 

14 29.87804 29.94134 30.27501 47.73092 47.86524 48.52674 61.0385 61.20347 62.00077 

15 31.83552 31.8983 32.26444 50.24531 50.38 51.06776 63.68301 63.84606 64.65129 

16 33.72659 33.78901 34.18451 52.63034 52.76519 53.47443 66.14201 66.30277 67.11064 
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4.5 COMPARISON TO SOUTH AFRICAN RESULTS 

The studies conducted by Smit et al (2003), on 20 South African companies and Holman et al 

(2011) on the top 42 non-financial South African companies, produced similar when applying 

Merton’s model. Both studies reported credit spreads close to zero, especially for short 

maturities, which were lower than the actual credit spreads observed in the market. Smit et al 

(2003) also implemented the STvD model which produced more realistic spreads, which can be 

seen in Table 2.3. Table 4.3 presents a comparison of the credit spreads obtained from the 

methodology outlined in Chapter 3 and the average 5 year credit spreads for the different rated 

companies obtained by Smit et al (2003) applying the STvD model. The methodology followed 

in this paper resulted in higher spreads, although these values are not completely comparable 

because the ratings used in this paper are national scale ratings and not global ratings which 

were used by Smit et al (2003) and there are other factors, discussed in Chapter 2, which also 

affect credit spreads and can vary over time. 

Table 4.3: Comparison to Smit et al (2003) credit spreads 

 Smit et al (2003) applying STvD model 

Rating 
5 year credit 
spread(BP) 

Rating 
5 year average credit 
spread(BP) 

Aa.za 119.132 AA 51.38 

A.za 245.0595 A 69.86 

Baa.za 370.9871 BBB 237.25 

 

4.6 CONCLUSION  

Overall, the resulting credit spreads and default probabilities yield comparable predictions that 

can be used for CVA calculation. The model relies heavily on the use of observed credit 

spreads from the bond mark to market data and is therefore representative of the market. The 

method used for default probability calculation using the credit spreads is also directly in line 

with the intended use of the default probabilities, which is CVA quantification.    

In the following chapter the research will be viewed as a whole; overall conclusions will be 

drawn and final remarks will be made. The research will be assessed in terms of specifying 

where there is room for improvement and possibilities for further study will be stated.  
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CHAPTER 5 

CONCLUSION 

Credit risk and the management thereof, is still a developing field. There is an increasing 

importance of incorporating counterparty credit risk (CCR) into derivative valuation as well as 

financial reporting in the form of CVA. Default probabilities are necessary for the quantification 

of CVA and there are many different models and methods for estimating default probabilities. 

The relevant literature regarding default probabilities was reviewed in detail. It was found that 

default probabilities are necessary for credit risk quantification in the form of credit valuation 

adjustments (CVA) and there are various models and methods for estimating risk-neutral default 

probabilities and credit spreads.  

The relationship between corporate bond spreads and credit default swap spreads makes it is 

possible to use bond mark to market data for the estimation of default probabilities and 

ultimately the quantification of CVA. The implementation of credit risk models on South African 

data delivered important results and showed that models such as Merton (1974) could be used 

for quantification of credit risk in a South African context. 

The methodology followed for obtaining credit spreads for the different rating classes and all 

unobservable maturities from South African bond mark to market data was given in Chapter 3. 

The credit spreads for the different rating classes were used for estimation of the default 

probability for the different rating classes.  

The results obtained in Chapter 4 showed that the method can be used for different sets of data 

and is not just applicable to the original data set it was developed from. Comparing the results 

with previous results from studies on the South African market showed that the model delivers 

results which are in line with expectations and delivers predictions that can be used for the 

purpose of CVA quantification. 

The limited availability of the ratings data and the spreads listed in the bond mark to market files 

might have led to larger bias in the estimates obtained from the model, because the method of 

estimation relies heavily on the data. Therefore another data source other than JSE might have 

to be considered. The model is also not completely dynamic, because of the preparation of the 

data beforehand with the filtering and integration of the ratings. Certain assumptions were also 

made and it is therefore not completely generalised. Also, speculative grade ratings were not in 

the observed data set, but it is also necessary to calculate the default probability of such rated 

counterparties. 

A suggestion for further research, also using bond market data to calculate default probabilities,  

could be considering a reduced form model, possibly the model specified by Hull & White 
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(2000). This model would still use actual bond market data but not the given spreads; it would 

calculate the present value of the loss incurred in the event of a default and then use equation 

(2.9) to infer the default probability. 

Overall it can be deduced that South African bond mark to market data can be used for inferring 

default probabilities and ultimately used for the calculation of CVA. 
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APPENDIX B 

CUMULATIVE DEFAULT PROBABILITY 

If default is assumed to be driven by a Poisson process with constant hazard rate h, the 

cumulative default probability is given by: 

𝐹(𝑢) = 1 − exp [−ℎ𝑢]          (A.1) 

The instantaneous default probability which is implied from A1 is: 

𝑑𝐹(𝑢)

𝑑𝑢
= ℎexp [−ℎ𝑢]         (A.2) 

Because 𝑒𝑥𝑝[−ℎ𝑢] denotes the survival probability until time 𝑢, ℎ can be interpreted as the 

instantaneous forward default probability. 

The hazard rate can be linked to the CDS spread under the assumption that all cashflows are 

continuous. The value of the cashflows follows as 

∫ 𝐵(𝑢)𝑆(𝑢)𝑑𝑢
𝑇

0
          (A.3) 

Where 𝐵(𝑢) denotes the risk-free discount factor and 𝑆(𝑢) the survival probability which can 

also be written as 1 − 𝐹(𝑢). 

The CDS protection value can be represented as: 

(1 − 𝑅)∫ 𝐵(𝑢)𝑑𝐹(𝑢)
𝑇

0
= (1 − 𝑅)ℎ ∫ 𝐵(𝑢)𝑆(𝑢)𝑑𝑢

𝑇

0
      (A.4) 

The CDS spread can be seen as the unit cost of the protection, which is A.4 divided by A.3, 

therefore: 

𝑆𝑝𝑟𝑒𝑎𝑑 = (1 − 𝑅)ℎ or ℎ =
𝑆𝑝𝑟𝑒𝑎𝑑

1−𝑅
       (A.5) 
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APPENDIX C 

R CODE 

#creates data frame with non-callable fixed rate bonds 

bonddata<-read.table("E:\\Research\\Besa\\jan.csv",sep=",",header=TRUE) 

#creates data frame with non-callable bonds 

bonddata<-read.table("E:\\Research\\Besa\\jan2.csv",sep=",",header=TRUE) 

 

#creating data frames for the different ratings 

Aa.za<-

bonddata[bonddata[,"Rating"]=="Aa1.za"|bonddata[,"Rating"]=="Aa2.za"|bonddata

[,"Rating"]=="Aa3.za",] 

A.za<-

bonddata[bonddata[,"Rating"]=="A1.za"|bonddata[,"Rating"]=="A2.za"|bonddata[,

"Rating"]=="A3.za",] 

Baa.za<-

bonddata[bonddata[,"Rating"]=="Baa1.za"|bonddata[,"Rating"]=="Baa2.za"|bondda

ta[,"Rating"]=="Baa3.za",] 

 

#removing outliers, outliers defined as spreads higher than the average 

spread of the rating just below the given rating and lower than the average 

spread of the rating just above the given rating   

 

Baa.za_ave<-mean(Baa.za[,7]) 

A.za<-A.za[A.za[,7]<Baa.za_ave,] 

A.za_ave<-mean(A.za[,7]) 

Aa.za<-Aa.za[Aa.za[,7]<A.za_ave,] 

 

Aa.za_ave<-mean(Aa.za[,7]) 

A.za<-A.za[A.za[,7]>Aa.za_ave,] 

A.za_ave<-mean(A.za[,7]) 

Baa.za<-Baa.za[Baa.za[,7]>A.za_ave,] 

 

#function that adds 3 interpolated points to the dataset 

mod<-function(A) 

{ 

#interpolated points maturities 

tau1<-min(A[,4])+(max(A[,4])-min(A[,4]))/3 

tau2<-max(A[,4])-(max(A[,4])-min(A[,4]))/3 

 

t1<-min(A[,4]) 

r1<-A[A[,4]==min(A[,4]),7]/100 
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t2<-max(A[,4]) 

r2<-A[A[,4]==max(A[,4]),7]/100 

 

#interpolated spreads 

rtau1<-((tau1-t1)/(t2-t1))*(t2/tau1)*r2 + ((t2-tau1)/(t2-t1))*(t1/tau1)*r1 

rtau2<-((tau2-t1)/(t2-t1))*(t2/tau2)*r2 + ((t2-tau2)/(t2-t1))*(t1/tau2)*r1 

 

#new rows added to the dataset 

int1<-data.frame(Bond.Code=NA, ISIN.Code=NA, Maturity.Date=NA, Maturity=tau1, 

Coupon=NA, Companion.Bond=NA, BP.Spread=rtau1*100, Rating=NA, Trade.date=NA) 

int2<-data.frame(Bond.Code=NA, ISIN.Code=NA, Maturity.Date=NA, Maturity=tau2, 

Coupon=NA, Companion.Bond=NA, BP.Spread=rtau2*100, Rating=NA, Trade.date=NA) 

return(A=rbind(A,int1,int2)) 

} 

 

#new datasets used for regression analysis 

A.zamod<-mod(A.za) 

Aa.zamod<-mod(Aa.za) 

Baa.zamod<-mod(Baa.za) 

 

#regression analysis fitting the curve spread=a1+a2*exp(a3*maturity) for 

Aa.za rating 

startvals<-list(a1=160,a2=-90,a3=-0.2) 

Aa.zamodel<-

nls(BP.Spread~a1+a2*exp(a3*Maturity),data=Aa.zamod,start=startvals,trace=TRUE

,algorithm="port",lower=c(0,-1000,-0.2)) 

a1<-coef(Aa.zamodel)[1] 

a2<-coef(Aa.zamodel)[2] 

a3<-coef(Aa.zamodel)[3] 

 

#regression analysis fitting the curve spread=b1+b2*exp(b3*maturity) for A.za 

rating 

startvals<-list(b1=220,b2=-110,b3=-0.2) 

A.zamodel<-

nls(BP.Spread~b1+b2*exp(b3*Maturity),data=A.zamod,start=startvals,trace=TRUE,

algorithm="port",lower=c(0,-1000,-0.2)) 

b1<-coef(A.zamodel)[1] 

b2<-coef(A.zamodel)[2] 

b3<-coef(A.zamodel)[3] 

 

#regression analysis fitting the curve spread=c1+c2*exp(c3*maturity) for 

Baa.za rating 
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startvals<-list(c1=250,c2=-150,c3=-0.2) 

Baa.zamodel<-

nls(BP.Spread~c1+c2*exp(c3*Maturity),data=Baa.zamod,start=startvals,trace=TRU

E,algorithm="port",lower=c(0,-1000,-0.2)) 

c1<-coef(Baa.zamodel)[1] 

c2<-coef(Baa.zamodel)[2] 

c3<-coef(Baa.zamodel)[3] 

 

#plot of original data points 

par(mfrow=c(1,2)) 

plot(bonddata[,4],bonddata[,7],xlab="Maturity",ylab="Spread(BP)",xlim=c(0,flo

or(max(na.omit(bonddata[,4])))+3),ylim=c(0,max(na.omit(bonddata[,7])+50))) 

t<-seq(0,floor(max(na.omit(bonddata[,4])))+1,by=0.5) 

 

#plotting the fitted curves 

lines(t,a1+a2*exp(a3*t),lty=2) 

lines(t,b1+b2*exp(b3*t),lty=1) 

lines(t,c1+c2*exp(c3*t),lty=3) 

 

text(x=17.25,y=a1+a2*exp(a3*17.25),labels="Aa.za") 

text(x=17.25,y=b1+b2*exp(b3*17.25),labels="A.za") 

text(x=17.25,y=c1+c2*exp(c3*17.25),labels="Baa.za") 

 

diff1<-mean((b1+b2*exp(b3*t))-(a1+a2*exp(a3*t))) 

diff2<-mean((c1+c2*exp(c3*t))-(b1+b2*exp(b3*t))) 

 

diff<-mean(na.omit(diff1,diff2)) 

 

plot(bonddata[,4],bonddata[,7],xlab="Maturity",ylab="Spread(BP)",xlim=c(0,flo

or(max(na.omit(bonddata[,4])))+3),ylim=c(0,max(na.omit(bonddata[,7])+50))) 

lines(t,a1+a2*exp(a3*t),lty=2) 

lines(t,a1+a2*exp(a3*t)+diff,lty=1) 

lines(t,a1+a2*exp(a3*t)+2*diff,lty=3) 

 

text(x=17.25,y=a1+a2*exp(a3*17.25),labels="Aa.za") 

text(x=17.25,y=a1+a2*exp(a3*17.25)+diff,labels="A.za") 

text(x=17.25,y=a1+a2*exp(a3*17.25)+2*diff,labels="Baa.za") 

 

windows() 

plot(bonddata[,4],bonddata[,7],xlab="Maturity",ylab="Spread(BP)",xlim=c(0,flo

or(max(na.omit(bonddata[,4])))+3),ylim=c(0,max(na.omit(bonddata[,7])+50))) 
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Aa1.za<-(a1+a2*exp(a3*t))-ifelse((a1+a2)>diff/3,diff/3,0) 

Aa2.za<-Aa1.za+diff/3 

Aa3.za<-Aa2.za+diff/3 

 

lines(t,Aa1.za,lty=2) 

lines(t,Aa2.za,lty=2) 

lines(t,Aa3.za,lty=2) 

 

A1.za<-Aa3.za+diff/3 

A2.za<-A1.za+diff/3 

A3.za<-A2.za+diff/3 

 

lines(t,A1.za,lty=1) 

lines(t,A2.za,lty=1) 

lines(t,A3.za,lty=1) 

 

Baa1.za<-A3.za+diff/3 

Baa2.za<-Baa1.za+diff/3 

Baa3.za<-Baa2.za+diff/3 

 

lines(t,Baa1.za,lty=3) 

lines(t,Baa2.za,lty=3) 

lines(t,Baa3.za,lty=3) 

 

text(x=17.25,y=c(max(Aa2.za),max(A2.za),max(Baa2.za)),labels=c("Aa.za","A.za"

,"Baa.za")) 

 

#PDs calulated for t time points 

Aa1.zaPD=(1-exp(-t*Aa1.za/(0.6*10000)))*100 

Aa2.zaPD=(1-exp(-t*Aa2.za/(0.6*10000)))*100 

Aa3.zaPD=(1-exp(-t*Aa3.za/(0.6*10000)))*100 

 

A1.zaPD=(1-exp(-t*A1.za/(0.6*10000)))*100 

A2.zaPD=(1-exp(-t*A2.za/(0.6*10000)))*100 

A3.zaPD=(1-exp(-t*A3.za/(0.6*10000)))*100 

 

Baa1.zaPD=(1-exp(-t*Baa1.za/(0.6*10000)))*100 

Baa2.zaPD=(1-exp(-t*Baa2.za/(0.6*10000)))*100 

Baa3.zaPD=(1-exp(-t*Baa3.za/(0.6*10000)))*100 

 

#table of spreads 
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Spreads<-data.frame(t=t, Aa1.za=Aa1.za, Aa2.za=Aa2.za, Aa3.za=Aa3.za, 

A1.za=A1.za, A2.za=A2.za, A3.za=A3.za, Baa1.za=Baa1.za, Baa2.za=Baa2.za, 

Baa3.za=Baa3.za) 

 

#table of PDs 

PDs<-data.frame(t=t, Aa1.za=Aa1.zaPD, Aa2.za=Aa2.zaPD, Aa3.za=Aa3.zaPD, 

A1.za=A1.zaPD, A2.za=A2.zaPD, A3.za=A3.zaPD, Baa1.za=Baa1.zaPD, 

Baa2.za=Baa2.zaPD, Baa3.za=Baa3.zaPD) 

 

#plot of cumulative defalut probability 

windows() 

plot(t,Aa1.zaPD,ylim=c(0,100),xlab="Time(years)",ylab="Cumulative default 

probability(%)",type="l",lty=2,xlim=c(0,18)) 

lines(t,Aa2.zaPD,lty=2) 

lines(t,Aa3.zaPD,lty=2) 

lines(t,A1.zaPD,lty=1) 

lines(t,A2.zaPD,lty=1) 

lines(t,A3.zaPD,lty=1) 

lines(t,Baa1.zaPD,lty=3) 

lines(t,Baa2.zaPD,lty=3) 

lines(t,Baa3.zaPD,lty=3) 

 

text(x=17.25,y=c(max(Aa2.zaPD),max(A2.zaPD),max(Baa2.zaPD)),labels=c("Aa.za",

"A.za","Baa.za")) 

 

#creating tables of spreads and default probabilities in excel 

write.csv(Spreads, file = "E:\\Research\\Besa\\non-callable 

Spreads.csv",row.names=FALSE) 

write.csv(PDs, file = "E:\\Research\\Besa\\non-callable 

PDs.csv",row.names=FALSE) 

write.csv(Spreads, file = "E:\\Research\\Besa\\non-callable fixed 

Spreads.csv",row.names=FALSE) 

write.csv(PDs, file = "E:\\Research\\Besa\\non-callable fixed 

PDs.csv",row.names=FALSE) 
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APPENDIX D 

TABLES OF SPREADS AND DEFAULT PROBABILITIES 

Table C.1: Spreads of non-callable fixed rate bonds 

 

 

Table C.2: Default probabilities of non-callable fixed rate bonds  

t Aa1.za Aa2.za Aa3.za A1.za A2.za A3.za Baa1.za Baa2.za Baa3.za 

0 0 0 0 0 0 0 0 0 0 

1 0.477683 1.171509 1.860498 2.544683 3.224099 3.898778 4.568754 5.234058 5.894725 

2 1.47799 2.846906 4.196801 5.527941 6.840585 8.13499 9.41141 10.67009 11.91129 

3 2.844849 4.862685 6.838613 8.773501 10.6682 12.52356 14.34037 16.11946 17.86159 

4 4.458075 7.094648 9.658462 12.15153 14.57579 16.93316 19.22547 21.45452 23.62206 

5 6.227333 9.450783 12.56343 15.56907 18.4714 21.27396 23.98018 26.59337 29.11673 

6 8.086187 11.86449 15.48749 18.96155 22.2928 25.48712 28.55012 31.48722 34.30358 

7 9.986791 14.28871 18.38502 22.28557 25.9997 29.53633 32.90393 36.11059 39.164 

8 11.89545 16.69102 21.22557 25.51329 29.56763 33.4013 37.02629 40.45398 43.69509 

9 13.78908 19.04989 23.98967 28.62801 32.98331 37.07283 40.91281 44.51846 47.90408 

10 15.65235 21.35161 26.66578 31.62087 36.24116 40.54926 44.56626 48.31185 51.80435 

11 17.47562 23.58814 29.2479 34.48845 39.34083 43.83381 47.99399 51.84603 55.41276 

12 19.25327 25.75535 31.73385 37.23094 42.28537 46.93281 51.20601 55.13511 58.74783 

13 20.9825 27.85185 34.12401 39.85091 45.07994 49.85439 54.21378 58.19418 61.82855 

14 22.66245 29.87804 36.42042 42.3524 47.73092 52.60763 57.02934 61.0385 64.67361 

15 24.29356 31.83552 38.62615 44.74028 50.24531 55.20193 59.66477 63.68301 67.30095 

16 25.87711 33.72659 40.74482 47.01984 52.63034 57.6467 62.13184 66.14201 69.72751 

 

 

t Aa1.za Aa2.za Aa3.za A1.za A2.za A3.za Baa1.za Baa2.za Baa3.za 

0 9.259318 51.23517 93.21103 135.1869 177.1627 219.1386 261.1144 303.0903 345.0662 

1 28.72966 70.70551 112.6814 154.6572 196.6331 238.6089 280.5848 322.5606 364.5365 

2 44.67063 86.64648 128.6223 170.5982 212.574 254.5499 296.5258 338.5016 380.4775 

3 57.72199 99.69784 141.6737 183.6496 225.6254 267.6013 309.5771 351.553 393.5288 

4 68.40754 110.3834 152.3592 194.3351 236.311 278.2868 320.2627 362.2385 404.2144 

5 77.15613 119.132 161.1078 203.0837 245.0595 287.0354 329.0113 370.9871 412.963 

6 84.31886 126.2947 168.2706 210.2464 252.2223 294.1981 336.174 378.1499 420.1257 

7 90.18322 132.1591 174.1349 216.1108 258.0866 300.0625 342.0383 384.0142 425.9901 

8 94.98455 136.9604 178.9363 220.9121 262.888 304.8638 346.8397 388.8155 430.7914 

9 98.91554 140.8914 182.8672 224.8431 266.819 308.7948 350.7707 392.7465 434.7224 

10 102.134 144.1098 186.0857 228.0615 270.0374 312.0132 353.9891 395.965 437.9408 

11 104.769 146.7448 188.7207 230.6966 272.6724 314.6483 356.6241 398.6 440.5758 

12 106.9264 148.9022 190.8781 232.8539 274.8298 316.8056 358.7815 400.7574 442.7332 

13 108.6927 150.6685 192.6444 234.6202 276.5961 318.572 360.5478 402.5237 444.4995 

14 110.1388 152.1147 194.0905 236.0664 278.0422 320.0181 361.9939 403.9698 445.9456 

15 111.3228 153.2987 195.2745 237.2504 279.2262 321.2021 363.1779 405.1538 447.1296 

16 112.2922 154.268 196.2439 238.2197 280.1956 322.1714 364.1473 406.1232 448.099 
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Table C.3: Spreads including floating rate bonds 

t Aa1.za Aa2.za Aa3.za A1.za A2.za A3.za Baa1.za Baa2.za Baa3.za 

0 12.46204 54.05527 95.6485 137.2417 178.835 220.4282 262.0214 303.6146 345.2079 

1 22.99346 64.58669 106.1799 147.7731 189.3664 230.9596 272.5528 314.146 355.7393 

2 31.61585 73.20908 114.8023 156.3955 197.9888 239.582 281.1752 322.7684 364.3617 

3 38.67527 80.2685 121.8617 163.455 205.0482 246.6414 288.2346 329.8279 371.4211 

4 44.45504 86.04826 127.6415 169.2347 210.8279 252.4212 294.0144 335.6076 377.2009 

5 49.18711 90.78033 132.3736 173.9668 215.56 257.1532 298.7465 340.3397 381.9329 

6 53.0614 94.65462 136.2479 177.8411 219.4343 261.0275 302.6208 344.214 385.8072 

7 56.2334 97.82663 139.4199 181.0131 222.6063 264.1995 305.7928 347.386 388.9792 

8 58.83041 100.4236 142.0169 183.6101 225.2033 266.7966 308.3898 349.983 391.5762 

9 60.95667 102.5499 144.1431 185.7364 227.3296 268.9228 310.516 352.1093 393.7025 

10 62.6975 104.2907 145.884 187.4772 229.0704 270.6636 312.2569 353.8501 395.4433 

11 64.12277 105.716 147.3092 188.9025 230.4957 272.0889 313.6821 355.2754 396.8686 

12 65.28969 106.8829 148.4761 190.0694 231.6626 273.2558 314.8491 356.4423 398.0355 

13 66.24508 107.8383 149.4315 191.0248 232.618 274.2112 315.8044 357.3977 398.9909 

14 67.02728 108.6205 150.2137 191.807 233.4002 274.9934 316.5866 358.1799 399.7731 

15 67.6677 109.2609 150.8542 192.4474 234.0406 275.6338 317.2271 358.8203 400.4135 

16 68.19203 109.7853 151.3785 192.9717 234.5649 276.1582 317.7514 359.3446 400.9378 

 

 

Table C.4: Default probabilities including floating rate bonds 

t Aa1.za Aa2.za Aa3.za A1.za A2.za A3.za Baa1.za Baa2.za Baa3.za 

0 0 0 0 0 0 0 0 0 0 

1 0.382491 1.070672 1.754099 2.432804 3.106821 3.776182 4.440918 5.101062 5.756646 

2 1.048328 2.410768 3.754449 5.079629 6.386563 7.675502 8.946694 10.20038 11.43681 

3 1.915186 3.933954 5.911171 7.847694 9.744359 11.60199 13.42138 15.20333 16.9486 

4 2.920183 5.575112 8.157435 10.66914 13.11215 15.48835 17.79957 20.04758 22.23411 

5 4.016056 7.285961 10.44447 13.49538 16.44235 19.28892 22.03852 24.69445 27.2599 

6 5.167821 9.031294 12.73737 16.29246 19.70271 22.97403 26.11207 29.12228 32.00984 

7 6.349988 10.7859 15.01169 19.03732 22.87227 26.52557 30.00583 33.32124 36.4796 

8 7.544298 12.53209 17.2508 21.71494 25.93826 29.93373 33.71366 37.28967 40.67276 

9 8.737937 14.25778 19.44377 24.31608 28.89371 33.19446 37.23509 41.03133 44.59796 

10 9.922145 15.95501 21.58382 26.83565 31.73575 36.30767 40.57339 44.55342 48.26689 

11 11.09114 17.61878 23.66716 29.27147 34.46432 39.27591 43.73424 47.86523 51.69294 

12 12.24132 19.24625 25.69205 31.62335 37.0812 42.10341 46.72474 50.97719 54.89022 

13 13.37061 20.83609 27.65822 33.89243 39.5894 44.79542 49.5528 53.9002 57.87296 

14 14.47804 22.38798 29.56633 36.08075 41.99265 47.35776 52.22665 56.64521 60.6551 

15 15.5634 23.90231 31.41768 38.19083 44.29507 49.79646 54.75453 59.22295 63.25007 

16 16.62698 25.37993 33.21395 40.22551 46.50096 52.11758 57.14454 61.64374 65.67058 


