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Abstract 

The constant volatility assumption in the Black-Scholes model has led to the development of 

alternative models. These models capture the effect of the implied volatility from the market, 

with respect to the variation in time. That is, volatility is volatile in itself, which can lead to 

substantial errors in estimation of option prices. In illiquid markets it is difficult to obtain volatility 

surfaces due to the lack of data. Volatility surfaces enables investors to price options for any set 

of strike prices and time to maturity of the option. In this research assignment two different 

models are implemented in the South African market context. The first model is the Stochastic 

Alpha Beta Rho (SABR) model developed by Hagen et al. (2002) and adjusted by West (2005) 

to fitted illiquid markets. The second model is a deterministic approach, where a quadratic 

function is fit to the market data, developed by Kotzé et al. (2009). The SABR model initially did 

not fit the market data, but the author of this paper proposed an adjustment to the SABR 

volatilities to obtain a reasonable fit. This research paper found that the Quadratic Deterministic 

model results in more accurate results and it is easier to implement when compared to the 

SABR model. 

Key words: 

Volvol, SABR, ATM, Quadratic Deterministic, Options, Black-Scholes, Volatility Surface, ALSI, 

SAFEX, JSE, Moneyness 
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Opsomming 

Die konstante volatiliteit-aanname in die Black-Scholes model het gelei tot die ontwikkeling van 

alternatiewe modelle. Hierdie alternatiewe modelle sluit in hoe volatiliteit, geïmpliseer  deur die 

mark, varieer met betrekking tot tyd. Dit beteken dat volatiliteit self volatiel is, wat tot aansienlike 

foute kan lei in die beraming van opsie-pryse. Dit is moeilik om volatiliteit- oppervlaktes te kry in 

illikiede markte, as gevolg van die tekort aan markdata. ‘n Volatiliteitsoppervlakte stel die 

belegger in staat om opsies te prys van enige stel trefpryse en tyd tot die vervaldatum van die 

opsie. Hierdie navorsingsprojek identifiseer en implementeer twee modelle in die illikiede Suid-

Afrikaanse mark. Die eerste model is die Stogastiese Alpha Beta Rho (SABR)-model wat deur 

Hagen et al. (2002) ontwikkel is en deur West (2005) aangepas is om ‘n illikiede mark te pas. 

Die tweede model is ‘n deterministiese model wat ontwikkel is deur Kotzé et al. (2009). Die 

SABR-model het aanvanklik nie die markdata goed gepas nie. Hierdie navorsingsprojek het ‘n 

eenvoudige manier voorgestel en geïmplementeer wat gesorg het dat die model redelik goed 

pas. Die skrywer van hierdie navorsingsprojek het gevind dat die Kwadratiese Deterministiese-

model meer akkurate resultate oplewer. Dit is ook makliker om te implementer wat vir kleiner 

maatskappye, met moontlike beperkte hulpbronne, die beter opsie sal wees.  

Sleutelwoorde: 

Volvol, SABR, ATM, Kwadraties Deterministies, Opsies, Black-Scholes, Volatiliteitsoppervlakte, 

ALSI, SAFEX, JSE
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

 

Sircar and Papanicolaou (1998) stated that there is an immense pressure on practitioners to 

change to the risk-neutral world as demonstrated by the use of the implied Black-Scholes 

volatility measure on market prices. Volatility is assumed constant in the Black-Scholes model, 

which is a problem in a real world scenario where volatility itself varies over time. This means 

that using the Black-Scholes model can lead to errors when estimating implied volatility sur-

faces. The SABR (Stochastic Alpha Beta Rho) model was developed by Patrick Hagan, Deep 

Kumar, Andrew Lesniewski and Diana Woodward to account for the problem where volatility is 

assumed constant. The SABR model allows the volatility itself to be a function of time, thus 

volatility can change as time changes. 

In liquid markets, the SABR model is capable of approximating volatility smiles regardless of the 

estimation method used (Hansen, 2011:81). The problem with the standard SABR model is that 

in an illiquid market, like the South African Equity Derivatives Market and Over-the-counter 

(OTC) market, there is a shortage of input data to calibrate the volatility smiles. The Equity 

Derivatives Market of South Africa was formerly known as the South African Futures Exchange 

(SAFEX).1The shortage arises due to traders not publishing the input rates needed to estimate 

volatility smiles. Only banks have access to the OTC input data. West (2005) made certain 

adjustments to the standard SABR model and developed an algorithm which is robust and could 

possibly be used for mark to market and hedging of option portfolios. This means that the 

implied volatility surfaces in an illiquid market can be obtained with the possibility of minimal 

model errors. 

Kotzé and Joseph (2009) took a more deterministic approach. They showed how to generate 

the implied volatility surface using a quadratic deterministic function fitted to implied volatility 

data from the All Share Index (ALSI) options traded on the Equity Derivatives Market. Their 

research further showed that the deterministic function gives an implied volatility shape, which 

seems stable over time. 

West’s adjusted SABR model is relatively more complex and difficult to implement compared to 

the simpler quadratic deterministic approach taken by Kotzé and Joseph. In this research 

assignment the two approaches will be compared to find out which approach gives the most 

                                                           
1 The JSE acquired SAFEX in 2001, and is now called the Equity Derivatives Market. 

http://en.wikipedia.org/w/index.php?title=Patrick_Hagan&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Deep_Kumar&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Deep_Kumar&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Andrew_Lesniewski&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Diana_Woodward&action=edit&redlink=1
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accurate outputs, taking into consideration the complexity of the adjusted SABR model and 

simplicity of the deterministic approach, which can have an impact on efficiency.  

1.2 PROBLEM STATEMENT 

In illiquid markets, there might not be enough data to calibrate different volatility models. The 

SABR volatility model uses the at-the-money (ATM) volatility as an input. Kotzé and Joseph 

(2009:3) identified this as a problem in illiquid markets, because the market surfaces generated 

by this model will have errors due to a shortage in ATM traded options in the market. There are 

not enough ATM traded options in the South African market to generate enough data to 

calibrate the model. 

The second problem with the SABR model is that the parameters of the model (alpha, beta and 

rho) are independent of time (parameters are time-homogenous). Kotzé (2011:117) explained 

this to be a problem, because the volatility surfaces in the future will be the same as the volatility 

surfaces generated today. This means that the parameters must be estimated on a regular 

basis, which might be a time consuming process.  

1.3 RESEARCH QUESTION 

Which model results in more accurate estimations of the implied volatility surface in an illiquid 

market: estimating the volatility surface with a quadratic deterministic approach, or using the 

West’s adjusted SABR model? 

1.4 RESEARCH OBJECTIVES 

The main objective of this research assignment is to be able to investigate which prescribed 

method yields minimal errors to generate volatility surfaces in illiquid markets. This research 

assignment will give an in depth explanation of how the SABR model works and how it has been 

adjusted by West (2005) to fit an illiquid market. Furthermore, the simpler deterministic 

approach can be compared with the complexity of the adjusted SABR model to determine the 

trade-off between accuracy and efficiency. 

In South Africa the index options are traded on the ALSI futures contracts which is listed on the 

Equity Derivatives Market. This will be the source of the raw data needs for this study. The 

parameters will be estimated by minimising the sum of square errors of the observed option 

prices. 

1.5 BENEFITS OF THE STUDY 

This research assignment would be able to add to the reasonableness of certain models 

developed to capture the implied volatility smiles in an illiquid market. De Araujo and Mare 
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(2006:15) stated that illiquid traded options prove to be problematic in the South African equity 

derivatives market. This study would be able to give an indication of which approach is better to 

generate volatility smiles from an illiquid market. It will be of importance to entities with limited 

resources and time to test the reasonableness of the different approaches, as estimating 

volatilities can be relatively more expensive for smaller firms. The benefits of testing the two 

approaches in the South African market will help to further explain and understand the outputs 

and estimations of the different models. This study will also investigate the different ways in 

which banks estimate volatilities in the South African market.  

1.6 CHAPTER OUTLINE 

This section provides the reader with a broad overview of the content in this research 

assignment. The chapter following immediately after this is the literature review chapter in which 

previous research are set out and discussed. This is done to understand where the two models 

in question arise from. Chapter 2 is divided into three sub-chapters.  In Chapter 2.2 the Black-

Scholes model is briefly explained to get an understanding of how constant volatility is included 

into the model and why this assumption leads to the use of alternative models in estimating 

option prices. The SABR model developed by Hagen et al. (2002) is reviewed in Chapter 2.3. 

This is the first model in question. The model dynamics is discussed followed by the 

mathematical procedures in estimating the model parameters. Chapter 2.4 sets out the previous 

research that leads up to the Quadratic Deterministic model developed by Kotzé et al. (2009) 

and concludes by reviewing the theory that fully describes the volatility surface. 

Chapter 3 deals as the research methodology chapter in which the methods to implement the 

two models are discussed. This chapter is split up into three parts. In Chapter 3.2 a description 

of the data used is given, that is a description of the ALSI input data used. The second part of 

this chapter, Chapter 3.3, presents the methodology used to implement the SABR model in the 

South African context by using the defined formulas from Chapter 2.3. Following the SABR 

model is the methodology concerning the Quadratic Deterministic approach to estimate implied 

volatility surfaces. Chapter 3.4 sets out the methods and functions to implement this model. The 

chapter concludes by presenting a description of the comparison methods to determine how 

well the models fit the ALSI market data. 

After the methodology to implement the models follows the results and findings from 

implementing the two models, which is found in Chapter 4. In Chapter 4.2 the volatility skews for 

different expiries are shown to express the relationship between the volatilities implied from the 
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market and the corresponding moneyness.2 Chapter 4.3 sets out the results obtained from the 

SABR model and Chapter 4.4 the results obtained from the Quadratic Deterministic model. 

The results are summarised in Chapter 5, together with an overall conclusion and 

recommendations for further research on implied volatility surfaces in the South African market. 

This chapter also compares the SABR model and Quadratic Deterministic approach to give the 

reader an informative indication on which model captures the essence of volatility of volatility the 

best. 

 

 

 

 

 

 

                                                           
2𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 =

𝑆𝑡𝑟𝑖𝑘𝑒

𝑆𝑝𝑜𝑡
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

In this chapter, literature regarding implied volatility surfaces is discussed. Cont and Da 

Fonseca (2002:45) wrote that implied volatility surfaces of option prices changes dynamically 

over time, which is not taken into account by conventional modelling approaches like the model 

developed by Black (1976). The sub section that follows defines the Black-Scholes-Merton 

Model and pricing formulas to enable the reader to understand what assumptions led to the 

development of alternative models. Two alternative models namely the SABR model and 

Quadratic Deterministic approach are discussed following the Black-Scholes-Merton model.  

2.2 THE BLACK-SCHOLES-MERTON PRICING FORMULAS 

The following section serves as an introduction to fully understand the mathematics underlying 

the two models in question. The Black-Scholes method is widely used in the financial world and 

is therefore important to first understand what it entails and why alternative models are needed 

to capture the essence of volatility. 

Hull (2012) defines the Black-Scholes-Merton formulas for the price of European call and put 

options as the following: 

𝑐 = 𝑆0𝑒
−𝑞𝑇𝑁(𝑑1) − 𝐾𝑒

−𝑟𝑇𝑁(𝑑2) 

and 

𝑝 = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆0𝑒
−𝑞𝑇𝑁(−𝑑1) 

where 

𝑑1 =
ln (

𝑆0

𝐾
) + (𝑟 − 𝑞 +

𝜎2

2
)𝑇

𝜎√𝑇
 

𝑑2 =
ln (

𝑆0

𝐾
) + (𝑟 − 𝑞 −

𝜎2

2
)𝑇

𝜎√𝑇
= 𝑑1 − 𝜎√𝑇 

𝑆0 is defined as the stock price at time zero, 𝐾 the strike, 𝑟 the risk-free interest rate, 𝑞 the 

dividend yield and 𝑇 the time to maturity. The function 𝑁(𝑥) is the cumulative probability function 

of the standardised normal distribution. This means, if 𝑥 has a standard normal distribution, the 

probability that the random variable is less than 𝑥.   
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The Black-Scholes-Merton formulas can be derived by solving the Black-Scholes-Merton 

differential equation 

𝜕𝑓

𝜕𝑡
+ 𝑟𝑆

𝜕𝑓

𝜕𝑆
+
1

2
𝜎2𝑆2

𝜕2𝑓

𝜕𝑆2
= 𝑟𝑓 

Subject to the boundary conditions for a European call option 𝑓 = max(𝑆 − 𝐾, 0), when  𝑡 = 𝑇, 

and European put option 𝑓 = max(𝐾 − 𝑆, 0), when 𝑡 = 𝑇. 

The following assumptions are made in the derivation of the above differential equation 

 The stock price follows the following process with 𝜇 and 𝜎 constant 

 d𝑆

𝑆
= 𝜇d𝑡 + 𝜎d𝑧 (2.2.1) 

with d𝑧 defined as the basic Wiener process. 

 Short selling of securities is allowed. 

 There are no taxes or transaction costs in the buying and selling of the stock. 

 No dividends are paid during the derivative’s life. 

 No arbitrage opportunities. 

 Continuous security trading. 

 The risk-free rate is the same for all maturities and constant. 

 The option is “European”, which means it can only be exercised at maturity of the option. 

 

Black (1976) made adjustments to the original Black-Scholes-Merton model in order to price 

interest rate derivatives like options on futures. This is done in order to avoid estimating the 

income from the underlying asset, which is already included into the future’s price. Hull 

(2012:372) states that the future price incorporates the market’s estimate of its income. The 

Black-76 model discounts a forward rate 𝐹, instead of using the stock price 𝑆0 in the pricing 

formulas. Therefore, substitute 𝑆0 equal to 𝐹𝑒−(𝑟−𝑞)𝑇  into the original Black-Scholes-Merton 

pricing formulas as follows 

 𝑐76 = 𝑒
−𝑟𝑇[𝐹𝑁(𝑑1) − 𝐾𝑁(𝑑2)] (2.2.2) 

 𝑝76 = 𝑒
−𝑟𝑇[𝐾𝑁(−𝑑2) − 𝐹𝑁(−𝑑1)] (2.2.3) 

where 

𝑑1 =
ln (

𝐹

𝐾
) + (

𝜎2

2
)𝑇

𝜎√𝑇
 

𝑑2 =
ln (

𝐹

𝐾
) − (

𝜎2

2
) 𝑇

𝜎√𝑇
= 𝑑1 − 𝜎√𝑇 
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and 𝜎 is the volatility of the futures price, 𝐹. 

The assumption that volatility in the Black-Scholes model is constant is the reason for 

alternative models being developed and used instead of the Black-Scholes model. Volatility is 

not constant which resulted in models being developed to capture this so called volatility of 

volatility or “volvol”. In the following sections the SABR- and Quadratic Deterministic models are 

defined and explained to fully understand how each of them captures the volvol. 

2.3 THE SABR MODEL 

Hagen et al. (2002) derived the Stochastic Alpha Beta Rho Model where the forward value and 

volatility follows, under the forward measure, the processes  

d�̂� = �̂��̂�𝛽d𝑊1,          �̂�(0) = 𝑓 

d�̂� = 𝜈�̂�d𝑊2,          �̂�(0) = 𝛼 

The forward price and volatility processes are correlated by 

d𝑊1d𝑊2 = 𝜌𝑑𝑡 

with 𝜌 the correlation coefficient and 𝑊1 and 𝑊2 two Wiener processes. In the above equations 

𝛽 is the skewness parameter subject to the constraint 0 ≤ 𝛽 ≤ 1, and �̂� is the volatility. 

Furthermore, 𝜈 is defined as the volatility of volatility or volvol parameterwhich satisfies 𝜈 ≥ 0. 

These processes show that the forward price, 𝐹, as well as the volatility, 𝛼, is stochastic. The 

assumption of constant volatility in Black’s model can thus be dropped with the SABR model. 

formula (2.2.1) show how the volatility in Black’s model is constant and only depends on time, 

where the SABR includes extra shocks or randomness by adding a stochastic term to the 

process. This extra volatility is defined in the d�̂� term. To scale this extra randomness, the 

volvol parameter 𝜈 is included. Hagen et al. (2002) found that the SABR model has the 

tendency to be the simplest model which is homogenous in 𝐹 and 𝛼.  

The prices of European call and put options for the SABR model can be obtained from Black-

76’s formulas. Refer to formula (2.2.2) and formula (2.2.3), which is the Black-Scholes call- and 

put option prices, respectively. The implied volatility, 𝜎𝐵(𝐾, 𝑓), is then obtained from these 

prices. In Hagen et al. (2002) the approximation to the implied volatility is given by 
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 𝜎𝐵(𝐾, 𝑓) =
𝛼

(𝑓𝐾)
1−𝛽

2 {1 + [
(1−𝛽)2

24
𝑙𝑛 (

𝑓

𝐾
) +

(1−𝛽)4

1920
𝑙𝑛 (

𝑓

𝐾
) + 𝑜(𝐾, 𝑓)]}

× (
𝑧

𝑥(𝑧)
) × 

 

 

 
{1 + [

(1 − 𝛽)2

24

𝛼2

(𝑓𝐾)1−𝛽
+
1

4

𝜌𝛽𝛼𝜈

(𝑓𝐾)
1−𝛽

2

+
2 − 3𝜌2

24
𝜈2] 𝑇 + 𝑜(𝐾, 𝑓)} (2.3.1)3 

 

where     𝑧 =
𝜈

𝛼
(𝑓𝐾)(1−𝛽)/2ln (

𝑓

𝐾
) 

and     𝑥(𝑧) = ln (
√1−2𝜌𝑧+𝑧2+𝑧−𝜌

1−𝜌
) 

When the option is at-the-money, the strike price equals the spot price. The moneyness, 
𝑆𝑡𝑟𝑖𝑘𝑒

𝑆𝑝𝑜𝑡
=

𝐾

𝑓
, of an option is then equal to one, thus ln (

𝐾

𝑓
) equals zero. This leads to a reduction of formula 

(2.3.1), which simplifies the calculation of the ATM volatilities implied by the SABR model. The 

formula then simplifies to 

 
𝜎𝐴𝑇𝑀 = 𝜎𝐵(𝑓, 𝑓) =

𝛼

𝑓(1−𝛽)
{1 + [

(1 − 𝛽)2

24

𝛼2

𝑓2−2𝛽
+
1

4

𝜌𝛽𝛼𝜈

𝑓(1−𝛽)
+
2 − 3𝜌2

24
𝜈2] 𝑇 + 𝑜(𝐾, 𝑓)} (2.3.2) 

In formula (2.3.2), when 𝛽 = 1 the model represents a stochastic log normal model, which 

means that the stochastic process takes on the form 

d𝐹�̂� = 𝛼�̂�𝐹�̂�d𝑊𝑡 

When 𝛽 = 0 the process represents a stochastic normal model of the form 

d𝐹�̂� = 𝛼�̂�d𝑊𝑡 

Chapter 2.3.2 further elaborates on these two specific cases for 𝛽. 

The following sub-chapter sets out the dynamics of the SABR model. This is done to understand 

the qualitative behaviour of the model. The following approximations should only be used for 

demonstration purposes and not for pricing of an option. 

2.3.1 Model Dynamics 

Hagen et al. (2002) developed the following approximation for 𝜎𝐵(𝐾, 𝑓) to study the qualitative 

behaviour of the SABR model 

                                                           
3𝑜(𝐾, 𝑓) simply means that the following terms tend to zero as the expansion gets larger 
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𝜎𝐵(𝐾, 𝑓) =
𝛼

𝑓(1−𝛽)
{1 −

1

2
(1 − 𝛽 − 𝜌𝜆) ln (

𝐾

𝑓
) +

1

12
[(1 − 𝛽)2 + (2 − 3𝜌2)𝜆2] (𝑙𝑛 (

𝐾

𝑓
))

2

+ 𝑜(𝐾, 𝑓)} (2.3.3) 

 

with the strike 𝐾 not too far away from the current forward 𝑓. 

The local volatility is the implied volatility when the option is ATM, thus when the strike price is 

equal to the spot price. In formula (2.3.3) the local volatility is therefore the first factor defined as 

𝛼

𝑓1−𝛽
. Compared to the local volatility, 𝜆is defined as  

𝜆 =
𝜈

𝛼
𝑓1−𝛽 

which measures the strength 𝜈 of the volatility of the volatility (“volvol”). Hagen et al. (2002:90) 

stated that this formula should not be used to price real deals, it is only accurate enough to 

demonstrate the qualitative behaviour of the SABR model. 

The smile and skew refer to the implied volatility as a function of 𝑓 and 𝐾. The backbone refers 

to the curve generated by ATM volatility plots with a variation in 𝑓 during normal trading. Thus 

for ATM options the backbone is essentially 𝜎𝐵(𝑓, 𝑓) =
𝛼

𝑓1−𝛽
, which is the first term in equation 

(2.3.2). From this Hagen et al. (2002:90) observed, for 𝛽 = 0, the backbone to be downward 

sloping and 𝛽 = 1 results in a nearly flat backbone. This means the backbone is dependent on 

the value of 𝛽. 

The second term in equation (2.3.2) represents the slope of the implied volatility with respect to 

the strike 𝐾. Hagen et al. (2002) refers to the second term as the skew and views it as a 

summation of two terms known as the beta skew and the vanna skew. Thus, 

−
1

2
(1 − 𝛽)ln (

𝑓

𝐾
) 

represents the beta skew. Since 0 ≤  𝛽 ≤  1, the beta skew is downward sloping. This results 

from the local volatility being a decreasing function of the forward price. 

The vanna skew, 

1

2
𝜌𝜆 ln (

𝑓

𝐾
) 

is the skew caused by the correlation between the asset price and volatility. The negative 

correlation (𝜌 < 0) between the price of an asset and its volatility causes the vanna skew to be 

downward sloping on average. 
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2.3.2 SABR parameter estimation 

Tran and Weigardh (2014:39) described the calibration of the SABR model as minimising the 

gap between the observed and predicted implied volatilities fitted by the SABR model for each 

strike. The mathematical term for this process is called the Least Square Method and is defined 

as 

 min
𝜈,𝛼0,𝜌,𝛽

∑(𝜎𝑖 − 𝜎𝐵(𝜈, 𝛼0, 𝜌, 𝛽; 𝐾𝑖 , 𝑓))
2

𝑖

, (2.3.2.1) 

 

where �̅�𝑖 denotes the ith market observed implied volatility and 𝜎𝐵(𝜈, 𝛼0, 𝜌, 𝛽; 𝐾𝑖, 𝑓) denotes the 

implied volatilities from the SABR model subject to the SABR parameters given the 𝐾𝑖
𝑡ℎ strike 

and ATM forward price 𝑓. 

2.3.2.1 Estimating β 

According to Hagen et al. (2002), the estimation of 𝛽 can be determined in two ways. First from 

historical observations and secondly selected from “aesthetic considerations”. 

The historical observations method is approached by first taking the natural logarithm in 

equation (2.3.2). 

 𝑙𝑛 𝜎𝐴𝑇𝑀 = 𝑙𝑛 𝜎𝐵(𝑓, 𝑓) = 𝑙𝑛 𝛼 − (1 − 𝛽)𝑙𝑛 𝑓 +  

 

 
𝑙𝑛 {1 + [

(1 − 𝛽)2

24

𝛼2

𝑓2−2𝛽
+
1

4

𝜌𝛽𝛼𝜈

𝑓(1−𝛽)
+
2 − 3𝜌2

24
𝜈2] 𝑇 + 𝑜(𝑓)} (2.3.2.2) 

This equation can be approximated by 

𝑙𝑛 𝜎𝐴𝑇𝑀 ≈ 𝑙𝑛 𝛼 − (1 − 𝛽)𝑙𝑛 𝑓 

The third term in equation (2.3.2.2) is generally less than one or two percent and can therefore 

be ignored in estimating 𝛽. The parameter is extracted from log-log plots of historical 

observations of pairs of 𝑓 and 𝜎𝐴𝑇𝑀. This is done by plotting the natural logarithm of the ATM 

volatility on the y-axis and the natural logarithm of the forward price on the x-axis. West (2009:7) 

suggested that a time weighted regression is preferred in extracting an estimate for 𝛽. Hagen et 

al. (2002:91) found the historical observation approach to become quite noisy from both 𝑓 and 𝛼 

being stochastic.  
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An aesthetic consideration is a way of selecting the parameter due to the user’s certain believes 

about the data to be analysed. Three pre-determined estimations for 𝛽 will be discussed, that is 

𝛽 ∈  {0, 0.5, 1}. This results in three common models as shown by Hansen (2011:43): 

 𝜷 = 𝟎 - Stochastic Normal Model 

Setting the exponent 𝛽 = 0 results in the forward process with the form 

d𝑓𝑡 = 𝛼𝑡d𝑊𝑡 

This forward process is stochastic normally distributed in the sense that its increments 

are stochastic normally distributed with a mean of zero and log normal standard 

deviation.  This model is not usually suited for practical purposes as setting 𝛽 = 0 will 

enable the forward process to be negative (Hansen, 2011:43). 

 

 𝜷 = 𝟎. 𝟓 - Stochastic CIR model 

The Stochastic Cox, Ingersoll and Ross model, or more commonly known as the CIR 

model, is derived from the interest rate equilibrium model of Cox et al. (1985) and takes 

on the form 

d𝑓𝑡 = 𝛼𝑡𝑓𝑡
1/2
d𝑊𝑡 

The stochastic CIR model prevents the process from becoming negative in the “𝑓𝑡
1/2

“-

term. This non-negative feature gives the CIR model an advantage to the Normal 

stochastic model mentioned above and is thus the preferred model. 

 

 𝜷 = 𝟏 - Stochastic Lognormal Model 

The forward process now becomes 

d𝑓𝑡 = 𝛼𝑡𝑓𝑡d𝑊𝑡 

which is similar to the standard geometric Brownian motion in the Black-Scholes model 

with the difference of the SABR model’s volatility is a volatility itself, compared to the 

assumption in the Black-Scholes model that the volatility is constant. Setting 𝛽 = 1 

implies the forward rates being log normally distributed. This means the stochastic 

lognormal model contains the same property, as the CIR model, of non-negativity. 

 

2.3.2.2 Estimating 𝜶, 𝝂 and 𝝆 

There are two methods of estimating these parameters. The first method was developed by 

Hagen et al. (2002). Tran and Weigardh (2014:41) set out the following steps, which is used in 

estimating the parameters for the Hagen et al. (2002) method. First starting with the ATM 

volatility function stated above, 
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𝜎𝐴𝑇𝑀 = 𝜎𝐵(𝑓, 𝑓) =

𝛼0

𝑓(1−𝛽)
{1 + [

(1 − 𝛽)2

24

𝛼0
2

𝑓2−2𝛽
+
1

4

𝜌𝛽𝛼0𝜈

𝑓(1−𝛽)
+
2 − 3𝜌2

24
𝜈2] 𝑇} 

 

 

 ⇔0 = 𝐴𝛼0
3 + 𝐵𝛼0

2 + 𝐶𝛼0 − 𝜎𝐴𝑇𝑀𝑓
(1−𝛽) (2.3.2.3) 

 

where 

𝐴 = [
(1 − 𝛽)2𝑇

24𝑓(2−2𝛽)
] , 𝐵 = [

𝜌𝛽𝜈𝑇

4𝑓(1−𝛽)
] 𝑎𝑛𝑑 𝐶 = [1 +

2 − 3𝜌2

24
𝜈2𝑇]. 

The steps in estimating 𝛼, 𝜌 and 𝜈 are: 

1. Choose initial values for 𝜌 and 𝜈 . 

2. By using the input values for 𝛽, 𝜌 and 𝜈, solve 𝛼0 with equation (2.3.2.3). 

3. Insert all parameters back into equation (2.3.3) to calculate  𝜎𝐵 for every strike. 

4. Minimise the objective function  

 

min
𝜈,𝜌
∑[�̅�𝑖 − 𝜎𝐵(𝜈, 𝛼0(𝜈, 𝜌, 𝜎𝐴𝑇𝑀), 𝛽; 𝐾𝑖, 𝑓)]

2

𝑖

 

to get a new set of parameter values for 𝜌 and 𝜈. 

5. Repeat steps 2 and 3 to get a new set of parameters and 𝜎𝐵. 

6. Plug the new 𝜎𝐵 back into the given objective function, then compare the value with a 

certain convergence criteria. 

7. Move on to the next iteration until the convergence is met by a level of tolerance. 

 

West (2005:7) suggested that it is possible for the cubic to have more than one real root, in 

which case you should choose the smallest positive root. This study will assume the West 

(2005) approach. 

The second method entails using common optimisation techniques such as the Newton-

Raphson Method for finding real roots or minimising the sum of squared errors to solve the 

minimisation problem.4 

  

                                                           
4Although the second method is mentioned, its application is beyond the scope of this text. 
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2.4 QUADRATIC DETERMINISTIC APPROACH 

Kotzé and Joseph (2009) suggested fitting a quadratic function to the market data in order to 

obtain implied volatilities from the same deterministic model. This section first sets out different 

deterministic models before reviewing the quadratic function used for the ALSI volatility surface. 

2.4.1 Deterministic Models 

Deterministic volatility functions (DVF) are volatility models requiring no assumptions about the 

dynamics of the underlying process that generates the volatility (Kotzé et al. 2009:10). When the 

local volatility rate is a deterministic function of the asset price and time, the partial differential 

equation for option price dynamics is the well-known Black Scholes (1973) equation, 

 
−
1

2
𝜎2(𝐹, 𝑡)𝐹2

𝜕2𝑐

𝜕𝐹2
=
𝜕𝑐

𝜕𝑡
, (2.4.1.1) 

where 𝐹 is the forward price, 𝑐 the forward option price, 𝑡 the current time and 𝜎(𝐹, 𝑡) the local 

volatility of the price. Dumas, Fleming and Whaley (1998:2068) rewrote equation (2.4.1.1) to be 

applicable for future and forward contracts, with initial condition 𝑐(𝐾, 0) = 𝑚𝑎𝑥(𝑆 − 𝐾, 0), as 

 1

2
𝜎2(𝐹, 𝑇)𝐾2

𝜕2𝑐

𝜕𝐾2
=
𝜕𝑐

𝜕𝑡
, (2.4.1.2) 

In equation (2.4.1.2), 𝐾 is defined as the strike price, 𝑇 the time to expiration and 𝑐(𝐾, 𝑇) the call 

option price. Now valuing European-style options with the same time to expiration can be done 

simultaneously.5 Dumas et al. (1998:2068) suggested the following deterministic functions for 

the implied volatility, as they mention it to be an arbitrary function, 

Model 0: 𝜎 = 𝑎0  

Model 1: 𝜎(𝐾) = 𝑎0 + 𝑎1𝐾 + 𝑎2𝐾
2  

Model 2: 𝜎(𝐾, 𝑇) = 𝑎0 + 𝑎1𝐾 + 𝑎2𝐾
2 + 𝑎3𝑇 + 𝑎5𝐾𝑇  

Model 3: 𝜎(𝐾, 𝑇) = 𝑎0 + 𝑎1𝐾 + 𝑎2𝐾
2 + 𝑎3𝑇 + 𝑎4𝑇

2 + 𝑎5𝐾𝑇  

The variables 𝑎𝑖, 𝑖 = 0, . . . ,5, are determined by fitting the deterministic functions to the traded 

option data. Model 0 is the Black-Scholes model with a constant volatility of 𝑎0. Model 1 

captures the variation in the volatility arising from the asset price. Models 2 and 3 capture 

additional variation in volatility due to time variation. Dumas et al. (1998:2069) chose quadratic 

forms for the volatility function, mainly due to the Black-Scholes S&P 500 options’ implied 

volatilities having a parabolic shape. They used S&P 500 index option data for the period June 

1988 to December 1993. Their results showed the Root Mean Squared Valuation Error for 

                                                           
5Dumas et al. (1998) solved equation (2.4.1.2) with the Crank-Nicholson finite-difference method. 
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Model 0 was twice as much as Model 1. This means the model that included variation for 

volatility resulted in fewer errors than the constant volatility of the Black-Scholes model.6 

Beber (2001) applied the models developed by Dumas et al. (1998) on the Italian stock market 

index between 1995 and 1998. He found the Mib30 stock index gave similar smirks as the 

S&P500 stock index. Two models suggested fitting the market data. Model 1, which is a linear 

model, and a quadratic model 2. These two models are defined as 

Model 1: 𝜎 = 𝛽0 + 𝛽1𝐾+ 𝜖 
 

Model 2: 
𝜎 = 𝛽0 + 𝛽1𝐾 + 𝛽2𝐾

2
+ 𝜖  

In the models stated above, Beber (2001:15) defines 𝐾 as the moneyness and not absolute 

strike like Dumas et al. (1998). The last term, 𝜀, is the error arising from each model. His 

interpretations of the three parameters are as follows 

 𝛽0 represents a general level of volatility which localises the implied volatility function. It 

can be seen as the constant of linear regression. 

 𝛽1 is the coefficient that controls the displacement of the origin of the parabola with 

respect to ATM options. This parameter captures the negative profile that is responsible 

for the asymmetry in the risk-neutral probability density function. 

 The extra parameter, 𝛽2, in model 2 provides the implied volatility function a degree of 

curvature. 

 

2.4.2 Quadratic Function for the ALSI Volatility Surface 

Kotzé et al. (2009:14) suggested fitting the same quadratic function as Beber (2001) to model 

implied volatility surfaces for ALSI implied volatility data. They fitted three parameters to the 

data following a principle component analysis done by Alexander (2008:257). She found that 

the dynamics of the volatility skew from FTSE 100 index options are driven by three factors, 

namely, parallel shifts, tilts and curvature. The model Kotzé et al. (2009:14) proposed is as 

follows 

. 𝜎𝑚𝑜𝑑𝑒𝑙(𝛽0, 𝛽1, 𝛽2) = 𝛽0 + 𝛽1𝐾 + 𝛽2𝐾
2 (2.4.2.1) 

 

The variables in equation (2.4.2.1) are defined as 

                                                           
6See Table VII in Dumas et al. (1998:2102) for all estimation results. 
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 𝐾 is the strike price divided by the spot price, also more commonly known as the 

moneyness. 

 𝛽0 is the constant volatility parameter, responsible for the shift or trend with 𝛽0 > 0. Take 

note of the fact that 𝜎
𝐾→0
→  𝛽0. 

 𝛽1 is the correlation parameter, responsible for the slope of the model. In order for the 

no-spread-arbitrage condition to be satisfied, −1 < 𝛽1 < 0. 

 𝛽2 is defined as the volatility of volatility (“vol of vol”) parameter which accounts for the 

curvature or convexity in the model. The no-calendar-spread arbitrage condition 

requires 𝛽2 > 0.7 

 

2.4.3 Volatility Term Structure 

The volatility term structure is the variation in implied volatility due to a variation in time to 

maturity of the options. Volatility surfaces combine volatility smiles with the term structure to 

tabulate the volatilities appropriate for pricing an option with any strike price and any maturity 

(Hull, 2012:416). Equation (2.4.2.1) is independent of time; it must therefore be combined with 

the ATM volatility term structure to generate a volatility surface. Kotzé (2009:15) optimised the 

deterministic volatility function and ATM volatility term structure separately, for each expiry date. 

The functional form for the ATM volatility term structure is 

. 𝜎𝑎𝑡𝑚(𝜏) =
𝜃

𝜏𝜆
 (2.4.3.1) 

Here, 

 𝜏 is the months to expiry, calculated by 
𝑑𝑎𝑡𝑒𝑒𝑥𝑝𝑖𝑟𝑦−𝑑𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡

365
 ×  12 

 𝜆 determines the slope. If 𝜆 > 0, the ATM volatility term structure will be downward 

sloping whereas 𝜆 < 0 implies a downward sloping ATM volatility term structure. 

 The parameter 𝜃 controls the short-term ATM volatility curvature. 

 

2.4.4 Quadratic Approach with no-arbitrage across time 

To ensure no-arbitrage opportunities arise across time, which is across different expiry dates, 

the following smoothing function was developed by Kotzé et al. (2013:386) 

 
min
𝜃𝑘,𝜆𝑘

‖𝛽𝑘(𝜏) −
𝜃𝑘

𝜏𝜆𝑘
‖
2

 (2.4.4.1) 

                                                           
7See Fengler (2005) and Gatheral and Jacquier (2013) for information on no-spread- and no-calendar-
spread arbitrage. 
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Here 𝑘 = 0, 1, 2 and represents each of the three parameters from formula (2.4.2.1). Therefore 

Formula (2.4.3.1) must be minimised in order to obtain a curvature parameter, 𝜃𝑘, as well as a 

slope parameter, 𝜆𝑘, for each of the parameters in the parameter triplet (𝛽0, 𝛽1, 𝛽2). The expiry 

dates are defined as months to expiry and denoted as 𝜏 =
𝑑𝑎𝑡𝑒𝑒𝑥𝑝𝑖𝑟𝑦−𝑑𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡

365
× 12. From here the 

parameter term structure is defined by Kotzé et al. (2013:386) as 

 
𝛽𝑘
𝜏(𝜃𝑘, 𝜆𝑘) =

𝜃𝑘

𝜏𝜆𝑘
 (2.4.2.2) 

Substituting each of the parameters from formula (2.4.2.2) into formula (2.4.2.1) results in the 

fully described volatility surface. Therefore, the fully described Quadratic Deterministic Volatility 

surface is defined by six parameters as 

 
𝜎(𝐾, 𝜏)𝑚𝑜𝑑𝑒𝑙 =

𝜃2

𝜏𝜆2
𝐾2 +

𝜃1

𝜏𝜆1
𝐾 +

𝜃0

𝜏𝜆0
 (2.4.2.3) 

with 

 
𝜃0

𝜏𝜆0
> 0, 

 𝐾 the moneyness, i.e. 𝐾 =
𝑆𝑡𝑟𝑖𝑘𝑒

𝑆𝑝𝑜𝑡
. 

Kotzé et al. (2009:32) further noted that each of the parameter pairs (𝜃𝑘, 𝜆𝑘), 𝑘 = 0, 1, 2, implies 

that the parameters mean-revert, which means they tend to their average in the long term. 

2.5  SUMMARY 

The formulas to price options using the Black-Scholes-Merton pricing formulas were defined in 

this chapter. Assumptions regarding constant volatility led to the development of alternative 

models which captures the fact that volatility in itself varies. The SABR model, described in 

Chapter 2.3, introduced a stochastic process which includes an extra term of randomness. The 

extra term is a stochastic process that captures the so-called volatility of volatility. Furthermore, 

a formula to calculate the volatility implied by the SABR model was defined as well as the 

literature needed to estimate the parameters in the model. 

Another approach to estimate volatilities in the South African market is using deterministic 

models. These models require no assumptions of the dynamics of the underlying process. In 

this chapter the literature leading up to the Quadratic Deterministic model was discussed. 

The following chapter contains the methodology used to implement the SABR model and 

Quadratic Deterministic model in the South African market. The literature from this chapter is 
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used to explain the different methods in estimating the implied volatility surfaces of the South 

African ALSI.   
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 INTRODUCTION 

This chapter presents the methodology used to implement the SABR model and the Quadratic 

Deterministic approach for the South African Market. Detailed explanation is given on the 

models, with less detail on the data used and the process of cleaning this data, as the main 

focus of this study is the implementation of these two models in the South African market. The 

first part of this chapter sets out the methodology used for the SABR model, the second part for 

the Quadratic Deterministic model and the third part for the comparison methods of the two 

models in question. A description of the data used is also given in short. 

3.2 DESCRIPTION OF DATA 

In South Africa, index options traded on the ALSI are listed on the Equity Derivatives Market, 

formerly SAFEX. Kotzé et al. (2009:17) pointed out that although most index options are traded 

on the ALSI, it can still be illiquid at times with few ATM trades. This shortage in trade data may 

lead to significant errors in calibration of volatility models. 

Raw historical data for 2014 was extracted from the JSE’s website.8 These Excel files contain 

the equity contracts traded on each specific day. The data is first cleaned and grouped together 

into one spreadsheet containing all of the raw data needs. For the purposes of this text, only 

ALSI contracts are used with expiries in March 2014, June 2014, September 2014 and 

December 2014. Trade data in the final spreadsheet includes the strike price, spot price and 

traded volatility. The more liquid contracts are that of March, thus the contract with the earliest 

expiry dates. As time to expiry gets longer, the illiquidity of that contract increases. 

3.3 THE SABR MODEL 

The methodology to implement the SABR model defined in Chapter 2.3 now follows. Estimation 

of the parameters are all done in Matlab, by using and adapting the built-in Financial 

Instruments Toolbox functions. 

3.3.1 Estimation of β 

First the parameter 𝛽 can be estimated using a log-log plot of 𝜎(𝐹, 𝐹) and 𝐹 from the following 

function of Hagen et al. (2002:91) 

                                                           
8The source, https://www.jse.co.za/downloadable-files?RequestNode=/Safex/EdmStats, can be used to 
obtain all data sets. 

https://www.jse.co.za/downloadable-files?RequestNode=/Safex/EdmStats
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 ln 𝜎𝐵(𝐹, 𝐹) = ln 𝛼 − (1 − 𝛽) ln 𝐹 +⋯ (3.3.1) 

 

From this, linear regression of the observed ATM volatilities and forward rates can be used to 

estimate the slope. Tran et al. (2014:40) suggested 𝛽 being the slope of the line above the 

estimated slope. That is the estimated slope plus one.  

This study however followed the second approach suggested by West (2005:12), in which 

economic considerations in the South African context led to a specific, pre-selected value for 𝛽. 

The parameter 𝛽 is pre-specified as 𝛽 =  0.7 from which the rest of the parameters are 

estimated, respectively. He then chose the model that produced the smallest squared errors. 

Hagen et al. (2002:91) showed pre-selecting 𝛽 does not result in a substantial difference in the 

quality of the fit. With the value of 𝛽 pre-selected, the rest of the parameters can now be 

estimated. The following subsection sets out the methods in doing this. 

3.3.2 Estimation of 𝜶𝟎,  𝝆 and 𝝂 

First, consider only the parameter 𝛼0. There are two ways to estimate 𝛼0. First estimation is 

done by obtaining an implied  𝛼0 from 𝜎𝐴𝑇𝑀 and secondly by minimising the objective equation 

(2.3.2.1). 

In order to estimate  𝛼0 from  𝜎𝐴𝑇𝑀, first assume the values of 𝜌 and 𝜈 are known inputs. As 

mentioned above, use the following equation to obtain a cubic function of  𝛼0 

 
𝜎𝐴𝑇𝑀 = 𝜎𝐵(𝑓, 𝑓) =

𝛼0

𝑓(1−𝛽)
{1 + [

(1 − 𝛽)2

24

𝛼0
2

𝑓2−2𝛽
+
1

4

𝜌𝛽𝛼0𝜈

𝑓(1−𝛽)
+
2 − 3𝜌2

24
𝜈2] 𝑇} (3.3.2) 

Manipulating equation (3.3.2) by first multiplying with 𝑓(1−𝛽) through the whole equation, then 

subtracting both sides 𝜎𝐴𝑇𝑀 results in the following expression 

 0 = 𝐴𝛼0
3 + 𝐵𝛼0

2 + 𝐶𝛼0 − 𝜎𝐴𝑇𝑀𝑓
(1−𝛽)  

where 

 
𝐴 = [

(1 − 𝛽)2𝑇

24𝑓(2−2𝛽)
] , 𝐵 = [

𝜌𝛽𝜈𝑇

4𝑓(1−𝛽)
]  𝑎𝑛𝑑 𝐶 = [1 +

2 − 3𝜌2

24
𝜈2𝑇] 

 

 

West (2005:7) pointed out that one would choose the smallest non-negative real root if there are 

more than one real root. The Matlab function roots() is used to obtain the roots of the cubic 

function. 
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The second approach is described by Hansen (2011:51) as the free approach. The free 

approach estimates 𝛼0, 𝜌 and 𝜈 by minimising the objective equation (2.3.2.1).9 

By using the first approach, only 𝜌 and 𝜈 need to be estimated. These parameters are regarded 

as inputs from which a model error expression is determined. The error expression measures 

the distance between the traded volatilities and the volatilities implied by these parameters. As 

West (2005:8) did, minimise the error expression among all of the input pairs of 𝜌 and 𝜈.  

3.3.3 Implementation of the SABR model 

Implementation is done in Matlab. Nkounga (2015:122) used the functions and code for the 

SABR model written by Fabrice Douglas Rouah.10 Appendix A contains the coding used to 

implement the SABR model in Matlab. 

3.4 QUADRATIC DETERMINISTIC APPROACH 

Recall from chapter 2.4 the model defined as 

 𝜎𝑚𝑜𝑑𝑒𝑙(𝛽0, 𝛽1, 𝛽2) = 𝛽0 + 𝛽1𝐾 + 𝛽2𝐾
2. (2.4.2.1) 

The method we used to estimate volatility skews with the quadratic deterministic approach is the 

methodology developed by Kotzé et al. (2009:27). We start with initial values for the 

parameters𝛽0, 𝛽1and𝛽2, called the parameter triplet. The parameter triplet is then found such 

that the Euclidean distance between the model volatilities and the traded volatilities are 

minimised. At time 𝑡0 the minimisation problem to be solved is 

 min
𝛽0,𝛽1,𝛽2

‖𝜎𝑡𝑖
𝑚𝑜𝑑𝑒𝑙 − 𝜎𝑡𝑖

𝑡𝑟𝑎𝑑𝑒𝑑‖
2
 𝑤𝑖𝑡ℎ 𝑡𝑖  ∈ [𝑡0 − ℎ, 𝑡0] (3.4.1) 

The minimisation problem is solved subject to the constraints 

 𝛽1, 𝛽2 >  0 

 −1 < 𝛽0 <  0 

The parameters are calculated for each ALSI expiry. This is done by using the lm() function in 

R, which is a regression method. Thus, for each expiry we get a parameter for the slope (𝛽0), 

shift (𝛽1) and volatility-of-volatility (𝛽2). The ATM volatility generated by the model can now be 

calculated as 

 𝜎𝐴𝑇𝑀
𝑚𝑜𝑑𝑒𝑙(𝛽0, 𝛽1, 𝛽2, 𝜏) = 𝛽0(𝜏) + 𝛽1(𝜏) + 𝛽2(𝜏) (3.4.2) 

By using equation (2.4.2.1) and equation (3.4.1) we obtain the floating volatility skews as follows 

                                                           
9West (2005:8) and Hansen (2011:51) tested both approaches and preferred the paramatisation 
approach, which this paper therefore also followed.   
10Source of codes can be found at http://www.volopta.com 

http://www.volopta.com/
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          𝜎𝑓𝑙𝑜𝑎𝑡
𝑚𝑜𝑑𝑒𝑙(𝜏) = 𝜎𝑚𝑜𝑑𝑒𝑙(𝜏) − 𝜎𝐴𝑇𝑀

𝑚𝑜𝑑𝑒𝑙(𝜏) 

                                           = 𝛽1
𝜏(𝐾 − 1) + 𝛽2

𝜏(𝐾2 − 1) 

(3.4.3) 

Kotzé et al. (2009:20) pointed out that although equation (3.4.2) results in the ATM model 

volatilities and equation (3.4.3) the floating volatilities, the correct absolute volatilities are 

needed. This is obtained  by minimising the function 

 
min
𝜃,𝜆
‖𝜎𝐴𝑇𝑀

𝑚𝑜𝑑𝑒𝑙(𝜏) −
𝜃

𝜏𝜆
‖
2

 (3.4.4) 

 

where 𝜏 is the months to expiration. 

From Chapter 2.4.4, expression (2.4.4.1) below is the minimisation problem solved for each of 

the three beta parameters. The optim() function in R is used to obtain these six parameters 

needed to fully describe the Quadratic Volatility surface. 

 
min
𝜃𝑘,𝜆𝑘

‖𝛽𝑘(𝜏) −
𝜃𝑘

𝜏𝜆𝑘
‖
2

 (2.4.4.1) 

 

These six parameters (𝜃𝑘 , 𝜆𝑘), 𝑘 = 0, 1, 2, are directly substituted into formula (2.4.2.3) below, 

which fully describes the Quadratic Deterministic volatility surface. 

  

𝜎(𝐾, 𝜏)𝑚𝑜𝑑𝑒𝑙 =
𝜃2

𝜏𝜆2
𝐾2 +

𝜃1

𝜏𝜆1
𝐾 +

𝜃0

𝜏𝜆0
 

 

(2.4.2.3) 

 

Kotzé et al. (2015:64) extended formula (2.4.2.3) such that it consists of three inputs, namely 

the strike price, the spot price and the time to maturity. The following formula can be used to 

price the volatility for any of the specified inputs, given the process followed in this chapter to 

obtain the six parameters describing the model 

  

𝜎(𝐹, 𝐾, 𝜏)𝑚𝑜𝑑𝑒𝑙 =
𝜃2

𝜏𝜆2
((
𝐾

𝑆
)
2

− 1) +
𝜃1

𝜏𝜆1
(
𝐾

𝑆
− 1) + 𝜎𝐴𝑇𝑀(𝜏) 

 

(3.4.5) 

where 

 𝐾 the strike price11, 

                                                           
11Note K is not the moneyness anymore as previously defined. 
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 𝑆 the spot price, 

and, 

 
𝜎𝐴𝑇𝑀(𝜏) =

𝜃2

𝜏𝜆2
+
𝜃1

𝜏𝜆1
+
𝜃0

𝜏𝜆0
 (3.6.6) 

Formula (3.4.6) results from setting 𝐾 = 1 in Formula (2.4.2.3). Thus when the option is at-the-

money, the strike price is equal to the spot price; hence the moneyness is equal to one. 

3.5 COMPARISON METHODOLOGY 

Comparison of the two models is done graphically and statistically. The volatilities implied by the 

two models are plotted against the market volatilities to compare visually if the models fit the 

market data. A goodness-of-fit is done by calculating the MSE of each model and comparing the 

results to obtain a definitive conclusion on which model is more suitable for the illiquid South 

African market. Furthermore, a R2 value is calculated for each model to check how close the 

market data is when compared to the fitted regression line. The direct correlation measure is 

also calculated to measure the degree and direction which the models and the market volatilities 

move.  

The comparisons are done for the ATM volatilities, volatility skews and term structure for two 

separate dates. Using more than one date assures the validity of the two models. 

3.6 SUMMARY 

In this chapter the methodology used to implement the two models in question, which was 

described in Chapter 2, were discussed. The method to fit and obtain the necessary parameters 

was first discussed for the SABR model, then for the Quadratic Deterministic approach. A 

description of the comparison methods was also given. The following chapter sets out the 

results obtained from the implementation of the methodology from this chapter. 
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CHAPTER 4 

FINDINGS 

4.1 INTRODUCTION 

This chapter will present and discuss the results obtained from fitting the two models to the 

market data using the methodology described in Chapter 3. Modelling is done by fitting the data 

from two separate dates. The first date is 19 December 2013 and the second date is 19 March 

2014. Throughout this chapter, analysis is first done and explained for 19 December 2013 and 

then for 19 March 2014. 

4.2 MARKET VOLATILITY SKEWS 

The ALSI volatility skew for four maturity dates are given in Figure 4.1, Figure 4.2, Figure 4.3 

and Figure 4.4. As suggested by Hull (2012:414), the volatility skews for equities should be 

downward sloping. The implied volatility used in the market is the volatility implied by Black-

Scholes model. 

 

Figure 4.1: Volatility skew of an ALSI call option, 3 months to maturity. 
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Figure 4.2: Volatility skew of an ALSI call option, 6 months to maturity. 

 

 

Figure 4.3: Volatility skew of an ALSI call option, 9 months to maturity. 
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Figure 4.4: Volatility skew of an ALSI call option, 12 months to maturity. 

The plots show that low strike options have higher implied volatilities than high strike options. 

The reason for this downward sloping volatility skews, which backs up the results obtained, is 

described by Figlewski and Wang (2000) as the leverage effect. Figlewski et al. (2000:22) refers 

to the leverage effect as the link between stock returns and volatility changes. They found that 

only changes in the stock’s price have significant changes in the volatility of that stock. 

Hull (2012:415) explains the reason for a downward sloping smile in equity options concerns 

leverage in a way that as a company’s equity declines in value, the company’s leverage 

increases. This in turn means the company becomes riskier, which leads to an increase in 

volatility. The opposite effects are true for an increase in a company’s value.  

An example of the cleaned data input used for the results in the following sub chapters is found 

in Table 4.2.1 below. Table 4.2.1 represents only the data used for a call option expiring on 18 

December 2014. The data has to be sorted for each expiry data. Appendix C represents a 

screenshot of the raw data. 
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Moneyness Market Volatility 

0.7574 0.2689 

0.8332 0.2476 

0.8837 0.2345 

0.9342 0.2220 

0.9367 0.2214 

0.9594 0.2161 

1.0099 0.2050 

1.0604 0.1947 

1.1109 0.1854 

1.1362 0.1812 

1.1816 0.1738 

1.2839 0.1596 

 

Table 4.2.1: Data input on 19 March 2014 for a call option expiring on 18 December 2014 

4.2 THE SABR MODEL 

Implementation of the SABR model using the methodology described in Chapter 3.3 is done by 

utilising the built in Matlab functions in Matlab’s Financial Instruments Toolbox. Appendix A 

contains a full copy of the codes and functions used, which was adapted from the Matlab 

functions to suit the South African market and data. Parameters for each of the four expiry dates 

are given in table 4.1 below. The value of 𝛽 is chosen initially as 𝛽 = 0.7. West (2005:12) found 

that this value for beta suits the South African market, after taking a certain amount of economic 

factors into consideration. These parameters can be used in formula (2.3.1) to price the volatility 

of any strike given the specific maturity date’s parameters. 

 

 

 

 

 

 

Table 4.1: Estimated SABR parameters for 19 Dec 2013 

 

Months To Expiry Alpha (𝛼) Beta (𝛽) Rho (𝜌) Nu (𝜈) 

3 1.0339 0.7 -0.5930 0.86244 

6 1.1774 0.7 -0.6823 0.64985 

9 1.1737 0.7 -0.6327 0.60349 

12 1.2454 0.7 -0.6954 0.53416 
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The parameters in Table 4.1 can be used to calculate the ATM volatility term structure by 

substituting them into formula (2.3.2).12 Four ATM volatilities from the SABR model can be 

compared to the only four ATM volatilities obtained from the market. This gives an indication of 

how well the model fits the market data. The SABR model results in a MSE of 0.00294% and a 

R2 of 0.95957 when compared to the market. An R2 value of 0.95957 is close to one, which 

would suggest that the model reflects almost all of the variance from the implied volatilities from 

the market. The direct correlation between the ATM SABR volatilities and the ATM market 

volatilities is 0.97957. These results together with Figure 4.5 below indicate that the SABR 

model is a good fit for the market data. 

 

Figure 4.5: Comparison of ATM traded volatilities and ATM SABR volatilities on 19 

December 2013 

Using the parameters for 3 months to expiry (𝛼 = 1.0339, 𝛽 = 0.7, 𝜌 = −0.593 and 𝜈 = 0.86244) 

and Formula (2.3.1), the SABR volatility can be obtained and compared to the market volatility. 

After shifting the SABR volatilities with the average difference between the SABR volatilities and 

Market volatilities, the adjusted SABR volatilities are obtained. This results in an MSE of 

0.00072% when the volatilities from the SABR model are compared to the market volatilities. 

Figure 4.6 below shows the plot of this comparison. The volatilities implied by the SABR model 

over-estimates the volatility, although the shape of the curve seems to be in line with the market 

volatilities. This research assignment suggests taking the mean difference between each data 

point and subtracting it from the SABR volatilities. Figure 4.6 shows the adjusted SABR model 

to then be a reasonable fit of the market data. 

                                                           
12Hagen et al. (2002:90) found that higher order terms in formula (2.3.2) are unnecessary as it does not 
lead to significantly more accurate results.    
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Figure 4.6: SABR model volatilities vs. Market volatilities on 19 December 2013 

The effectiveness of the adjustment proposed by this paper can be seen in Figure 4.6 above. 

The average error on each pair of volatilities, SABR- and Market volatilities, for each strike is 

calculated and subtracted from the original SABR volatilities. This seems to be an effective 

method to ensure the volatilities implied by the SABR model fits the market data. The reason 

behind the SABR model overestimating the market volatilities might be from formula (2.3.1). The 

extra terms, which falls away when the option is ATM, seems to add to the overestimation of the 

market volatility. However, the method suggested above addresses this problem sufficiently.   

 

Figure 4.7: ALSI volatility surface given SABR model on 19 December 2013 
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The ALSI volatility surface can be obtained for any vector of strikes by using the parameters in 

Table 4.1. As an example, use strikes ranging from R300 to R400. As mentioned in Chapter 3, 

the Matlab functions blackvolbysabr() and surf() are used to graph the surface. Above, in Figure 

4.7, a downward sloping concave volatility surface is obtained. Haugh (2009:4) describes this 

kind of volatility surface as a surface depicting times of market stress. That is that short term 

options have smaller volatilities than long term options. Figure 4.7 shows as time to maturity 

increases, the volatility increases. 

As an example to show how any point on Figure 4.7 can be used to price the volatility, consider 

an option with a strike price of R350, a spot price of R396 and 3 months to maturity. The 

corresponding volatility results in 21.56%. Formula (2.3.1) can be used with the specified inputs 

and parameters for 3 months to expiry from Table 4.1 to obtain this value. 

The same analysis is done using the current date as 19 March 2014 to check the 

reasonableness of the model for other dates. Table 4.2 below sets out the estimated SABR 

parameters, where the market data for four expiry dates are used. The four expiry dates are 20 

March 2014, 19 June 2014, 18 September 2014 and 18 December 2014. 

 

 

 

 

 

 

 

 

Table 4.2: Estimated SABR parameters on 19 March 2014 

Formula (2.3.2) can now be used together with the parameters in Table 4.2 to calculate the 

ATM volatilities implied by the SABR model. The ATM volatilities from the SABR model are 

compared with the ATM volatilities from the market. Figure 4.8 below shows this comparison. 

The comparison results in a MSE of 0.000041%, which is a low measure of deviation from the 

actual ATM volatilities. A R2 value of 0.965 is obtained when the ATM market volatilities are 

compared with the SABR ATM volatilities. The R2 value is close to one. This gives an indication 

that the variance caused by the SABR model is reflected in the model. The direct correlation 

between the ATM model volatilities and ATM market volatilities is 0.982, which indicates the 

SABR model volatilities moves almost perfectly (direct correlation close to one) in the same 

Days To Expiry Alpha(𝛼) Beta (𝛽) Rho (𝜌) Nu (𝜈) 

1 1.1168 0.7 -0.4859 2.1561 

92 1.2041 0.7 -0.7371 0.7754 

183 1.2139 0.7 -0.7477 0.6097 

274 1.1980 0.7 -0.7020 0.5485 
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direction as the ATM market volatilities. Figure (4.8), together with the error analysis shows the 

SABR model seems to be a reasonable fit as of 19 March 2014. 

 

Figure 4.8: Comparison of ATM traded volatilities and ATM SABR volatilities for 19 Mar 

2014  

The volatilities from the SABR model can now be compared to the market volatilities for a 

specific term structure. As an example, consider a call option with one day left to expiry. This 

means the analysis is done on 19 March 2014 with expiry of the option the next day, i.e. 20 

March 2014. The corresponding parameter values for an option expiring in one day can be 

found in the first row of Table 4.2. These parameter values are substituted into Formula (2.3.1) 

to obtain the SABR volatilities. The same strike prices are used as the corresponding market 

volatilities. This allows for direct comparison between the market volatilities and the SABR 

model volatilities. Figure 4.9 illustrates this comparison which results in a MSE of 0.00992%. 

The low MSE indicates the model fits the data reasonably well, although there is a higher MSE 

than that of the date 19 December 2013. 

Figure 4.9: SABR model volatilities vs. Market volatilities on 19 March 2014 
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Figure 4.10:ALSIvolatility surface given SABR model on 19 March 2014 

Figure 4.10 shows the volatility surface for a call option on the ALSI. It shows that options on the 

ALSI with lower strike prices tend to have higher volatilities implied by the SABR model. This is 

in conjunction with Haugh (2009:4) who noted that a principle feature of a volatility surface is 

that options with higher strikes tend to have lower volatilities implied by the model over the time 

to maturity. The volatility surface depicts the extremely high implied volatility for lower strikes 

and shorter time to maturity. 

4.3 THE DETERMINISTIC QUADRATIC MODEL 

Using the methodology described in Chapter 3.4, calibration is done in R for a call option with 

expiry date of 20 March 2014 and current date of 19 December 2013. The parameters were 

found to be: 𝛽0 =  0.7008, 𝛽1 = −0.7663, 𝛽2 =  0.2391. Figure 4.11 shows the market data 

compared to the fitted function from equation (2.4.2.1). Parameters are optimised for each of the 

four expiry dates and listed in Table 4.3 below. Included in Table 4.3 are the ATM volatilities, 

which can be calculated using formula (3.4.2).13 

                                                           
13 Note Tau is calculated as described in Chapter 2.4.3, thus it is calculated as the months to expiry. 
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Figure 4.11: ALSI volatility skew on 19 December 2013 for option with 20 March 2014 

expiry 

 

 

Expiry VolVol (𝛽2) Slope (𝛽1) Shift (𝛽0) ATM Model Vol Tau 

20-Mar-14 0.2391 -0.7663 0.7008 0.1736 2.9918 

19-Jun-14 0.2109 -0.6727 0.6590 0.1972 5.9836 

18-Sep-14 0.1736 -0.5758 0.6071 0.2050 8.9753 

18-Dec-14 0.1657 -0.5459 0.5874 0.2072 11.9671 

 

Table 4.3: Regression Parameters and ATM model volatility on 19 December 2013 

The floating volatilities can be calculated for each expiry by using formula (3.4.3). Figure 4.12 

below shows the floating volatilities for each of the four expiry dates.  
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Figure 4.12: Deterministic floating skews for four expiry dates. 

By optimising Formula (3.4.5) across all expiry dates, the final six parameters are obtained 

which fully describes the Quadratic Volatility Surface as set out in Chapter 3.4 and defined as in 

Formula (3.4.6). Table 4.4 below lists the six parameters, which is used to calculate the volatility 

for any specified moneyness and months to expiry. The calculated parameters are as of 19 

December 2013 and can be recalibrated on a daily basis.  

 

 

 

Table 4.4: Optimised parameters on 19 December 2013 

Using formula (3.4.6) and the parameters in Table 4.4, the following equation can be used to 

determine the volatility for a call option on the ALSI given any moneyness and months to expiry: 

 
𝜎(𝐾, 𝜏)𝑚𝑜𝑑𝑒𝑙 =

0.32602

𝜏0.27088
𝐾2 +

−1.01552

𝜏0.24855
𝐾 +

0.81326

𝜏0.12912
 

(4.3.1) 

As an example, if the volatility of a call option with three months left to expiry and a moneyness 

of 1.05 is required, Formula (4.3.1) results in a volatility of 16.11%. To compare the ATM traded 

volatilities with the ATM volatilities obtained from the model, substitute 𝐾 = 1 in Formula (4.3.1) 

and use the corresponding months to expiry which is available in the market. Figure 4.13 below 

sets the comparison out graphically. The Quadratic Deterministic model gives a MSE of 

0.004344%, which means the model is a reasonable fit to the market data. 
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Figure 4.13: Comparison of ATM traded volatilities and ATM Quadratic model volatilities 

on 19 December 2013 

In Figure 4.13, when comparing the third data point, the ATM volatility implied by the model is 

overestimating the ATM volatility implied by the market. This can lead to a potential problem in 

estimating volatilities. The Quadratic Deterministic model fits a quadratic function to the market 

data. The ATM Quadratic curve in Figure 4.13 shows the quadratic shape of the ATM volatilities 

implied by the model. Overall the model still seems to be a reasonable fit, but it is worthy to note 

that the model might have significant estimation errors on a particular rise or fall between 

successive times to maturity. 

By using Formula (4.3.1) and, for example, 3 months to expiry, the volatility skew is calculated 

and compared to the market volatilities. The comparison results in a 0.0001336% MSE, which is 

again an indication that the model fits the data reasonably well. Figure 4.14 is a graphic 

representation of the comparison. 

Formula (4.3.1) can now be used to calculate the volatility surface for an option on the ALSI 

index. As an example, the time to maturity ranges from 0.1 to 1 and the moneyness ranges from 

0.8 to 1.5. This results in a volatility surface with time to maturity on the x-axis, moneyness on 

the y-axis and the volatility implied by the model on the y-axis. Figure 4.15 graphs the given 

example of the volatility surface. 
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Figure 4.14: Quadratic Model Volatilities vs. Market Volatilities on 19 December 2013 

 

Figure 4.15: Quadratic Deterministic Volatility Surface on 19 December 2013 
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moneyness ranging from 0.3 to 0.7. Figure (4.16) shows graphically how the initial model fits 

compared to the market volatilities. 

 

Figure 4.16: ALSI volatility skew on 19 March 2014 for call option with 19 June 2014 

expiry 

The beta parameters across all four expiry dates are listed in Table 4.5 below, as well as the 

corresponding ATM model volatilities. The same effect takes place as the time to maturity 

increases when comparing these parameters to the parameters in Table 4.3. That is the volvol 

and shift parameters decrease while the slope parameters increase as the time to maturity 

increases.  

Expiry VolVol (𝛽2) Slope (𝛽1) Shift (𝛽0) ATM Model Vol Tau 

20-Mar-14 0.2064 -0.9884 0.9645 0.1825 0.0329 

19-Jun-14 0.1756 -0.6744 0.6932 0.1944 3.0247 

18-Sep-14 0.1623 -0.5804 0.6153 0.1972 6.0164 

18-Dec-14 0.1505 -0.5208 0.5651 0.1948 9.0082 

Table 4.5: Regression parameters and ATM model volatility as of 19 March 2014 

Again, to find the final six parameters that completely describe the volatility surface, Formula 

(3.4.5) is optimised across all expiry dates. The optimised parameters are listed in Table 4.6 

below.  
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Table 4.6: Optimised parameters on 19 March 2014 

The parameters in Table 4.6, together with Formula (3.4.6), are used to obtain an equation that 

fully describes the volatility surface. Equation (4.3.2) below can therefore be used to estimate 

the volatility for any call option with the specified time to maturity and moneyness: 

 
𝜎(𝐾, 𝜏)𝑚𝑜𝑑𝑒𝑙 =

0.176186

𝜏0.048335
𝐾2 +

−0.701460

𝜏0.102119
𝐾 +

0.721352

𝜏0.086547
 

(4.3.2) 

For the sake of comparison, consider a call option with three months left to expiry and a 

moneyness of 1.05. Formula (4.3.2) results in a volatility of 18.18%. When 𝐾 = 1 is substituted 

in Formula (4.3.2), the ATM model volatilities are obtained and can be compared to the ATM 

market volatilities. Figure (4.17) shows this comparison graphically. The Quadratic Deterministic 

model on the date of 19 March 2014 results in a MSE of 0.006063%. This is a low MSE which is 

an indication that the model is a good fit. 

 

Figure 4.17: Comparison of ATM traded volatilities and ATM Quadratic model volatilities, 

as of 19 March 2014 

The volatility skew is now calculated and compared with the market volatility to further assess 

how well the model fits. Once again formula (4.3.2) can be used to obtain the volatilities for a 

specified time to maturity. Figure (4.18) below shows the volatility skew for a call option with 

three months left to expiry. The market volatilities are shown on the same graph to once again 

compare how well the model fits the data. The comparison leads to a MSE of 0.0000396%. 
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Figure (4.18) is a further indication of the low MSE, as the market volatilities are superimposed 

onto the model volatilities. The volatility surface representation for a call option on 19 March 

2014 can be found in Figure (4.19) below.  

 

Figure 4.18: Quadratic Model Volatilities vs. Market Volatilities as of 19 March 2014 

 

Figure 4.19: ALSI Quadratic Deterministic Volatility Surface on 19 March 2014 
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4.4 SUMMARY 

In this chapter the results from implementing the two models in questions for ALSI market data 

are discussed. The volatility skews for each expiry was first shown to capture the relationship 

between the volatility implied by the market and the moneyness of the call option. A downward 

sloping volatility skew was observed for all expiries which depicts the leverage effect. The 

volatility skews also gave an indication that volatility is not constant. The constant volatility 

assumption in the Black-Scholes model leads to the necessity of alternative models which is 

able to capture the stochastic volatility from the market. 

The SABR model was first implemented for two separate dates. This was done to check the 

reasonableness of the model on different dates. The original volatility estimates from the model 

overestimated the volatility when it is compared to the ALSI volatility. This text suggested 

adjusting the volatilities by the average mean of the errors, as the shape of the curve is the 

same as the market. The adjustment resulted in a MSE of 0.00072% on 19 December 2013 and 

a MSE of 0.00992% on 19 March 2014. This means that the SABR model, when adjusted is a 

reasonable method to estimate the volatility of volatility. 

In the third part of the results, a Quadratic Deterministic approach was implemented for two 

separate dates. This is a simpler model of capturing the volatility of volatility by fitting a 

quadratic regression function to the ALSI data. The results from this model were satisfactory by 

fitting the data with a MSE of 0.00013% on 19 December 2013 and a MSE of 0.0000396% on 

19 March 2014. Implementation of this model therefore estimates reasonable parameters, which 

can be used to estimate the volatility, and in turn the option prices, by fitting a quadratic 

function. 

The conclusion of this research assignment follows in the next chapter. A recommendation is 

given on which model suits the illiquidity of the South African market the best to estimate the 

volatilities of the ALSI. Chapter 5 also includes a discussion on further research of this topic. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

The purpose of this research assignment was to find methods which are able to capture the 

stochastic behaviour of volatility in an illiquid market like the South African ALSI market. In this 

research assignment two methods are discussed and compared, namely the SABR model by 

West (2005) and the Quadratic Deterministic model by Kotzé et al. (2009).  

The previous literature that led up to each of the two models was discussed in Chapter 2. This 

enables the reader to understand where these models came from and how their underlying 

mathematics work, which is needed to implement the models. It was first necessary to review 

the Black-Scholes model as it assumes constant volatility. This allows the reader to understand 

why alternative models were later developed. For the SABR model it was necessary to explore 

the stochastic processes used to capture the volatility of volatility as well as the dynamics of the 

parameters. The literature regarding estimating the model parameters were also discussed. The 

literature review of the Quadratic Deterministic approach first includes a discussion on 

deterministic models. This is essential in understanding the reasoning behind a quadratic 

approach for the South African market. Chapter 2 concludes by setting out the optimisation 

functions to estimate the Quadratic Deterministic model’s parameters. 

The construction of the volatility models was presented in Chapter 3. This serves as the 

methodology chapter for the two models of this research assignment. A description of the ALSI 

market data was given followed by the different methods to implement the two models, 

respectively. The programming of the SABR model was done by adapting the Financial 

Instruments Toolbox available in Matlab and is presented in Appendix A. Programming for the 

Quadratic Deterministic approach was done in R by the author. The code to implement this 

model can be found in Appendix B. 

Chapter 4 contains the results from implementing the SABR model and Quadratic Deterministic 

approach. The results showed that both models fit the ALSI market data reasonably well, 

although the SABR model first needed to be adjusted as it did not fit the data well initially. The 

SABR model over-estimated the volatilities. This research assignment adjusted the SABR 

implied volatilities by the average of the errors between each pair of SABR volatilities and 

market volatilities. The results showed that this approach leads to a reasonably good fit.  The 

complexity of the SABR model when compared to the simplicity of the Quadratic Deterministic 

approach leads to a recommendation of implementing the Quadratic Deterministic model to 

estimate volatility surfaces in the South African market. Furthermore, the Quadratic 

Deterministic approach leads to a better fit of the market data on the separate dates used in this 
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research assignment. The results from the SABR model showed that it does not fit the data well 

initially, which means that the model leads to substantial errors. By adjusting the SABR model 

with the method described in this paper, a reasonable fit was obtained. The benefit of using the 

simpler approach is that smaller companies, with fewer resources than larger companies, can 

easily program and implement this model. 

There are still open questions on the topic of estimating volatility surfaces in an illiquid market. 

This research assignment implemented two models to capture the essence of volatility of 

volatility in the illiquid South African market. The research on this topic can be extended to other 

countries to test whether these two models hold for any illiquid market. This will be able to lead 

to a model which can be used in any smaller, illiquid market. Using the proposed models can 

also lead to further research the valuation of options with put-call parity. This will enable an 

investor to price options, which captures the fact that volatility is volatile in itself, more 

accurately. 

To conclude this research assignment, taking into account that smaller organisations has 

arguably fewer resources, the author is led to believe that the Quadratic Deterministic approach 

leads to more accurate results and is therefore preferred above the SABR model. It is therefore 

a suitable model to estimate volatility surfaces in the illiquid South African market.  
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APPENDIX A:Matlab Code for the SABR model 

%Step 1: Load market data, vector of market volatilities, vector of 

market strikes, settlement date (‘day, month, year), vector of 

exercise dates 

>>YearsToExercise = yearfrac(Settle, ExerciseDates, 1) 

>>NumMaturities = length(YearsToExercise) 

%Step 2: Calibrate SABR parameters for each maturity 

>> Beta = 0.7; 

Betas = repmat(Beta, NumMaturities, 1); 

Alphas = zeros(NumMaturities, 1); 

Rhos = zeros(NumMaturities, 1); 

Nus = zeros(NumMaturities, 1); 

>>options = optimoptions('lsqnonlin','Display','none'); 

>>for k = 1:NumMaturities 

    % This function solves the SABR at-the-money volatility equation 

as a 

    % polynomial of Alpha 

alpharoots = @(Rho,Nu) roots([... 

        (1 - Beta)^2*YearsToExercise(k)/24/CurrentForwardValues(k)^(2 

- 2*Beta) ... 

        Rho*Beta*Nu*YearsToExercise(k)/4/CurrentForwardValues(k)^(1 - 

Beta) ... 

        (1 + (2 - 3*Rho^2)*Nu^2*YearsToExercise(k)/24) ... 

        -ATMVolatilities(k)*CurrentForwardValues(k)^(1 - Beta)]); 

 

% This function converts at-the-money volatility into Alpha by 

picking the smallest positive real root,    % as proposed by West 

(2005). 

atmVol2SabrAlpha = @(Rho,Nu) min(real(arrayfun(@(x) ... 

        x*(x>0) + realmax*(x<0 || abs(imag(x))>1e-6), 

alpharoots(Rho,Nu)))); 

 

    % Fit Rho and Nu (while converting at-the-money volatility into 

Alpha) 

objFun = @(X) MarketVolatilities(:,k) - ... 
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%blackvolbysabr code can be found at the end of this Appendix         

blackvolbysabr(atmVol2SabrAlpha(X(1), X(2)), ... 

        Beta, X(1), X(2), Settle, ExerciseDates(k), 

CurrentForwardValues(k), ... 

MarketStrikes(:,k)); 

 

    X = lsqnonlin(objFun, [0 0.5], [-1 0], [1 Inf], options); 

    Rho = X(1); 

    Nu = X(2); 

% Get final Alpha from the calibrated parameters 

    Alpha = atmVol2SabrAlpha(Rho, Nu); 

 

Alphas(k) = Alpha; 

Rhos(k) = Rho; 

Nus(k) = Nu; 

end 

>>CalibratedPrameters = array2table([Alphas Betas Rhos Nus],... 

    'VariableNames',{'Alpha' 'Beta' 'Rho' 'Nu'},... 

    'RowNames',{'Expiry date 1';'Expiry date 2';... 

    'Expiry date 3';'Expiry date 4'}) 

%Step 3: Construct volatility surface 

%Create any vector of strikes 

>>ComputedVols = zeros(length(PlottingStrikes), NumMaturities) 

>>for k = 1:NumMaturities 

ComputedVols(:,k) = blackvolbysabr(Alphas(k), Betas(k), Rhos(k), 

Nus(k), Settle, ... 

ExerciseDates(k), CurrentForwardValues(k), PlottingStrikes); 

end 

figure; 

surf(YearsToExercise, PlottingStrikes, ComputedVols); 

xlim([0 1]); ylim([290 410]); zlim([0.15 0.3]); 

view(113,32); 
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set(gca, 'Position', [0.13 0.11 0.775 0.815], ... 

    'PlotBoxAspectRatioMode', 'manual'); 

xlabel('Years to exercise', 'Fontweight', 'bold'); 

ylabel('Strike', 'Fontweight', 'bold'); 

zlabel('Implied SABR Black volatility', 'Fontweight', 'bold') 

 

%Below is the blackvolbysabr function used in the algorithm above 

BlackvolbysabrfunctionoutVol = blackvolbysabr(Alpha, Beta, Rho, Nu, 

Settle, ExerciseDate, ForwardValue, Strike, varargin) 

%% Input argument checking 

 % Number of inputs must be >=8 and <=12. 

narginchk(8, 12); 

if (~isnumeric(Alpha))||(~isscalar(Alpha))||(Alpha<=0) 

error(message('fininst:blackvolbysabr:invalidAlpha')); 

end 

if (~isnumeric(Nu))||(~isscalar(Nu))||(Nu<=0) 

error(message('fininst:blackvolbysabr:invalidNu')); 

end 

if (~isnumeric(Beta))||(~isscalar(Beta))||(Beta<0)||(Beta>1) 

error(message('fininst:blackvolbysabr:invalidBeta')); 

end 

 

if (~isnumeric(Rho))||(~isscalar(Rho))||(Rho<-1)||(Rho>1) 

error(message('fininst:blackvolbysabr:invalidRho')); 

end 

if 

(~isnumeric(ForwardValue))||(~isvector(ForwardValue))||any(ForwardValu

e<=0) 

error(message('fininst:blackvolbysabr:invalidForwardValue')); 

end 

if (~isnumeric(Strike))||(~isvector(Strike))||any(Strike<=0) 

error(message('fininst:blackvolbysabr:invalidStrike')); 
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end 

try 

    Settle = datenum(Settle); 

ExerciseDate = datenum(ExerciseDate); 

catch ME 

newMsg = message('fininst:blackvolbysabr:invalidSettleExerciseDate'); 

newME = MException(newMsg.Identifier,getString(newMsg)); 

newME = addCause(newME,ME); 

throw(newME) 

end 

if (~isscalar(Settle))||(~isscalar(ExerciseDate)) 

error(message('fininst:blackvolbysabr:invalidSettleExerciseDate')); 

end 

if (Settle >ExerciseDate) 

error(message('fininst:blackvolbysabr:ExerciseDateBeforeSettle')); 

end 

 p = inputParser; 

p.addParameter('Basis',0,@(x) isvalidbasis(x)&&isscalar(x)); 

p.addParameter('Model','Hagan2002',@(x) 

any(validatestring(lower(x),{'hagan2002','obloj2008'}))); 

try 

p.parse(varargin{:}); 

catch ME 

newMsg = message('fininst:blackvolbysabr:invalidInputs'); 

newME = MException(newMsg.Identifier,getString(newMsg)); 

newME = addCause(newME,ME); 

throw(newME) 

end 

 Basis = p.Results.Basis; 

Model = p.Results.Model; 

 Time = yearfrac(Settle, ExerciseDate, Basis); 

 [ForwardValue,Strike] = finargsz(1,ForwardValue(:),Strike(:)); 



48 

 

NumVols = length(Strike); 

outVol = zeros(NumVols,1); 

 % Special case: At-the-money, (Forward == Strike); 

ATMidx = find(abs(ForwardValue - Strike) <= eps(max(ForwardValue, 

Strike))); 

V1 = ForwardValue(ATMidx).^(1 - Beta); 

V2 = (1 - Beta).^2.*Alpha.^2./24./V1.^2 + ... 

    0.25.*Rho.*Beta.*Nu.*Alpha./V1 + ... 

    (2 - 3.*Rho.^2).*Nu.^2./24; 

outVol(ATMidx) = Alpha.*(1 + V2.*Time)./V1; 

NATMidx = setdiff((1:NumVols)',ATMidx); % Get non-ATM indices 

 

% Special case: Beta == 1 

if ((1 - Beta) <= eps(max(1, Beta))) 

    z = Nu./Alpha.*log(ForwardValue(NATMidx)./Strike(NATMidx)); 

    x = log((sqrt(1 - 2.*Rho.*z + z.^2) + z - Rho)./(1 - Rho)); 

    V2 = 0.25.*Rho.*Alpha.*Nu + (2 - 3.*Rho.^2).*Nu.^2./24; 

outVol(NATMidx) = Alpha.*z.*(1 + V2.*Time)./x; 

 

% General case: 

else 

switch lower(Model) 

case 'hagan2002' % Original model by Hagan(2002) 

            V1 = (ForwardValue(NATMidx).*Strike(NATMidx)).^((1 - 

Beta)/2); 

            z = 

Nu./Alpha.*V1.*log(ForwardValue(NATMidx)./Strike(NATMidx)); 

            x = log((sqrt(1 - 2.*Rho.*z + z.^2) + z - Rho)./(1 - 

Rho)); 

            V2 = (1 - Beta).^2.*Alpha.^2./24./V1.^2 + ... 

                0.25.*Rho.*Beta.*Nu.*Alpha./V1 + ... 

                (2 - 3.*Rho.^2).*Nu.^2./24; 
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            V3 = (1 - 

Beta).^2.*(log(ForwardValue(NATMidx)./Strike(NATMidx))).^2./24 + ... 

                (1 - 

Beta).^4.*(log(ForwardValue(NATMidx)./Strike(NATMidx))).^4./1920; 

outVol(NATMidx) = Alpha.*z.*(1 + V2.*Time)./x./V1./(1 + V3); 

case 'obloj2008' % Version by Obloj(2008) 

            z = Nu.*(ForwardValue(NATMidx).^(1 - Beta) - ... 

Strike(NATMidx).^(1 - Beta))./Alpha./(1 - Beta); 

            x = log((sqrt(1 - 2.*Rho.*z + z.^2) + z - Rho)./(1 - 

Rho)); 

            V1 = (ForwardValue(NATMidx).*Strike(NATMidx)).^((1 - 

Beta)/2); 

            V2 = (1 - Beta).^2.*Alpha.^2./24./V1.^2 + ... 

                0.25.*Rho.*Beta.*Nu.*Alpha./V1 + ... 

                (2 - 3.*Rho.^2).*Nu.^2./24;          

outVol(NATMidx) = Nu.*log(ForwardValue(NATMidx)./Strike(NATMidx)).*(1 

+ V2.*Time)./x;         

end 

end % end of if 
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 APPENDIX B: R code Quadratic Deterministic Model 

Set directory of Path to file 

>setwd("Enter path of cleaned data on hard drive") 

 

#Function to optimise coefficients for data  

Optimise<-function(Data) 

#Data must be in csv format 

#Input is in string format e.g. "Sept14" 

#Outputs are the coefficients 

{ 

  Date<-paste(Data,".csv",sep="") 

ExpDate<-read.csv(Date,header=TRUE) 

  data1<-as.data.frame(ExpDate) 

  M1<-data1$M 

  Vol1<-data1$Vol 

  MS1<-M1^2 

  Quad1<-lm(Vol1~M1+MS1) 

summary(Quad1) 

  b01<-summary(Quad1)$coefficients[1,1] 

  b11<-summary(Quad1)$coefficients[2,1] 

  b21<-summary(Quad1)$coefficients[3,1] 

Coeff<-list(b0=b01,b1=b11,b2=b21) 

} 

 

 

##############################################################3 

 

ThetaLambda<-function(Date1,Date2,Date3,Date4,Current,Expiry) 

#Current and Expiry inputs must is as follows year-month-day in string 

format e.g. "2007-05-22" 

#Expiry is a vecotr of all the expiry dates (of size 4) e.g. 

c("","","","") 
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{ 

  Expiry<-as.Date(Expiry) 

  Current<-as.Date(Current) 

  t1<-(Expiry[1]-Current)*12/365 

  t2<-(Expiry[2]-Current)*12/365 

  t3<-(Expiry[3]-Current)*12/365 

  t4<-(Expiry[4]-Current)*12/365 

 

  dat0<-

data.frame(b0=c(Mar14$b0,Jun14$b0,Sept14$b0,Dec14$b0),t=c(t1,t2,t3,t4)

) 

  min.RSS0 <- function(data, par) { with(data, sum((b0 - 

par[1]/(t^par[2]))^2))} 

  result0<- optim(par = c(0, 0), min.RSS0, data = dat0) 

 

  dat1<-

data.frame(b1=c(Mar14$b1,Jun14$b1,Sept14$b1,Dec14$b1),t=c(t1,t2,t3,t4)

) 

  min.RSS1 <- function(data, par) { with(data, sum((b1 - 

par[1]/(t^par[2]))^2))} 

  result1<- optim(par = c(0, 0), min.RSS1, data = dat1) 

 

  dat2<-

data.frame(b2=c(Mar14$b2,Jun14$b2,Sept14$b2,Dec14$b2),t=c(t1,t2,t3,t4)

) 

  min.RSS2 <- function(data, par) { with(data, sum((b2 - 

par[1]/(t^par[2]))^2))} 

  result2 <- optim(par = c(0, 0), min.RSS2, data = dat2) 

 

 

  theta0<-result0$par[1] 

  lambda0<-result0$par[2] 

  theta1<-result1$par[1] 

  lambda1<-result1$par[2] 

  theta2<-result2$par[1] 
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  lambda2<-result2$par[2] 

 

output<-list(t0=theta0, l0=lambda0, 

t1=theta1,l1=lambda1,t2=theta2,l2=lambda2) 

} 

 

######################################################################

# 

 

Mar14<-Optimise("Mar14") 

Jun14<-Optimise("Jun14") 

Sept14<-Optimise("Sept14") 

Dec14<-Optimise("Dec14") 

 

Expiry<-c("2014-03-20","2014-06-19","2014-09-18","2014-12-18") 

outputs<-ThetaLambda(Mar14,Jun14,Sept14,Dec14,"2014-03-19",Expiry) 

 

######################################################################

## 
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APPENDIX C: Screenshot of raw ALSI data 
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