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Abstract 

Hedging refers to a strategy used to lower the overall risk of a portfolio. There exists a broad 

selection of models available in the market to implement a dynamic hedging strategy. In this re-

search assignment the Constant Conditional Correlation (CCC), Dynamic Conditional Correla-

tion (DCC) and the Copula Based-GARCH models are constructed and executed to evaluate 

the most appropriate model for the selected data. Mili and Abid (2004:659) argues that a dy-

namic hedging strategy leads to greater risk reduction as opposed to a static hedging strategy. 

Various summary statistics are calculated to detect if there is any autocorrelations present in the 

data, this is used for the testing of Autoregressive Conditional Heteroskedastic (ARCH) effects. 

Some goodness-of-fit (GOF) tests are calculated to interpret the data and to decide on appro-

priate distributions, this is followed by different information criterions to use in the process for 

model selection. Finally, the parameters of the three models will be estimated through the pro-

cess of maximum-likelihood. The results of each model fit are discussed and relevant compari-

sons are made. 

There are two hedging strategies implemented in this study, the first is the Top 40 index that will 

be directly hedged with its own futures, and secondly using foreign currency futures to cross 

hedge the currency exposure of holding foreign equity. It was found that the Copula-Based 

GARCH model, which permits nonlinear and asymmetric dependence between the two assets 

in the cross-hedge portfolio, results in the most appropriate model fit.  However, comparing the 

DCC and CCC-GARCH models, the conclusion is that the DCC-GARCH model is more appro-

priate than the CCC-GARCH model, therefore implying that the more dynamic a model is the 

better.  

Key words:  

Constant Conditional Correlation, Dynamic Conditional Correlation, Copula, GARCH, ARCH 
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Opsomming 

Verskansing verwys na ‘n strategie wat gebruik word om die algehele risiko van ‘n portefeulje te 

verlaag. Daar is ‘n wye keuse van modelle beskikbaar om ‘n dinamiese verskansings strategie 

te implimenteer. In hierdie navorsings opdrag gaan die Konstante Voorwaardelike Korrelasie 

(KVK), Dinamiese Voorwaardelike Korrelasie (DVK) en die Koepel gebaseerde-GARCH mod-

elle gebou en uitgevoer word om die mees geskikte model vir die geselekteerde data te vind. 

Mili en Abid(2004:659) argumenteer dat ‘n dinamiese verskansings strategie lei tot meer risiko 

vermindering teenoon ‘n statiese verskansings strategie. Verskeie opsommings statistieke word 

bereken om vas te stel of daar enige outokorrelasies teenwoordig is in die data, met ander 

woorde die toetsing vir Outoregressiewe Voorwaardelike Heteroskedastic (ORVH) effekte. ‘n 

Paar passingstoetse word bereken om die data te verstaan en om gepaste verdelings te sel-

ekteer, gevolg deur verskillende inligtings kriteria wat gebruik word in die proses van model 

seleksie. Ten slotte, sal die parameters van die drie modelle beraam word deur die proses van 

maksimum-waarskynlikheid. Die resultate van elke model word bespreek en relevante verge-

lykings word gemaak. 

Daar is twee verskansings strategieë wat in hierdie studie geïmplementeer word, die eerste is 

die Top 40 indeks wat direk verskans word met sy eie termynkontrakte, en tweedens die ge-

bruik van buitelandse valuta termynkontrakte om te kruis verskans deur die valuta blootstelling 

van die hou van buitelandse aandele. Daar is gevind dat die Koepel gebaseerde GARCH mod-

el, wat nie-lineêre en asimmetriese afhanklikheid tussen die twee bates toelaat in die kruis-

verskansings portefeulje, lei tot die mees geskikte model passing. Maar in die vergelyking van 

die DVK en KVK-GARCH modelle, is die gevolgtrekking dat die DVK-GARCH model meer 

toepaslik is as die KVK-GARCH model en dus kan die veronderstelling gemaak word dat hoe 

meer dinamies ‘n model is hoe beter is die model. 

Sleutel woorde: 

Konstante Voorwaardelike Korrelasie, Dinamiese Voorwaardelike Korrelasie, Koepels, ORVH 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

Portfolio protection is often as important as portfolio appreciation. Hull (2012:63) argues that an 

equity portfolio is hedged to minimize systematic risk. This also enables an investor to step out-

side of the market for a small period of time, since hedging might be more cost effective that 

selling the portfolio and buying it back at a later stage. In this research assignment, dynamic 

hedging will refer to the hedging of equity positions with relevant equity futures.  

Short-dated derivative instruments held in a portfolio are used to hedge long-dated derivatives 

to ensure against undesirable losses. Limitation to doing dynamic hedging involves being very 

careful when one hedges the higher order Greeks like gamma and vega, because transaction 

costs will increase (Greenbaum & Ravindrant, 2002:5). Kotzé (2010:1) states that in practice, 

hedging is often carried out using a position in futures rather than one in the underlying security. 

Dynamic hedging, as opposed to static hedging, refers to the continuous buying or selling of the 

underlying security to maintain a delta of zero. Static hedging refers to the process where one 

hedges on inception and then to leave it as it is. A static hedge, therefore, does not need to be 

rebalanced. Mili and Abid (2004:657) describes an optimal hedge ratio as the proportion of the 

cash position that should be covered with an opposite position on a futures market. 

Known literature places great emphasis on the estimation of a static hedge ratio by the use of 

the ordinary least-squares techniques. However, recent studies employ different bivariate condi-

tional volatility models to enable an estimation of a time-varying hedge ratio. The advantage of 

the time-varying hedge ratio is that it takes into account the continuous changes in the joint dis-

tribution of spot and futures returns (Hsu, Tseng & Wang, 2008:1096). Whereas a constant 

hedge ratio does not change as time passes. 

Using a static approach to hedge has the drawback that, when estimating the optimal hedge 

ratio, it overlooks the fact that two series are co-integrated. Most of the regression models al-

ready developed assumes that the variances and covariance of futures and spot returns are 

constant, and therefore obtaining a constant hedge ratio. 

Copula functions are used to construct multivariate distributions and to investigate the depend-

ence structure between random variables. A copula is the joint distribution of a vector of uniform 

random variables. Szego (2004:1) states that it is possible to map any vector of random varia-

bles into a vector of random variables with uniform margins, which enables the split of the mar-

gins of that vector to grasp the dependence. Using copula functions such as the Gumbel and 

Clayton, rather than the usual Gaussian assumption, can produce a richer dependence. 
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Most dynamic hedging models assume that the futures and spot returns follow a multivariate 

normal distribution with linear dependence. In the absence of the multivariate normality assump-

tion, the joint distribution is decomposed into its marginal distributions and a copula, which can 

be considered both individually and simultaneously. The copula refers to the dependence struc-

ture between the spot and the futures returns. The dependence parameters in the copula func-

tion represent time-varying processes that seek to find possible dynamic and nonlinear relations 

between the spot and futures returns (Hsu, Tseng & Wang, 2008:1097). 

Mili and Abid (2004:659) argues that the Generalised Autoregressive Conditional Heteroskedas-

ticity (GARCH) time-varying hedge ratio has the advantage above the constant hedge ratio that 

it ultimately leads to larger risk reduction. The construction of a time varying optimal hedge ratio 

that depends on the conditional variances and covariance between the spot and futures returns, 

implements a dynamic hedge ratio that takes the rapid stock of information accessible in both 

spot and futures markets into account. 

1.2 PROBLEM STATEMENT 

Earlier studies have already shown that the traditional regression-based static  method is un-

suitable for hedging using futures, and therefore a variety of different dynamic hedging strate-

gies have emerged in the market. In a dynamic hedging strategy, delta neutrality is key (i.e. the 

delta of the portfolio equals zero). This stems from the idea that gamma is an indicator of how 

fast the delta of a portfolio will change. 

An approach where a time-varying hedge ratio is present is a better method to implement to en-

sure a reduction of risk in a portfolio. A competitive time-varying dynamic hedging strategy has 

to be estimated to replace that of the static hedge ratio in the market. A model needs to be de-

veloped that takes account of the fact that two separate series can be co-integrated, since a 

time-varying hedge ratio is dependent on the conditional variances and covariance between the 

spot and futures returns. In addition, the joint distribution of spot and futures returns are contin-

uously changing.  

1.3 RESEARCH QUESTION 

Is it possible to improve the goodness of fit of a model by implementing a copula-based GARCH 

model as opposed to the Constant Conditional Correlation and Dynamic Conditional Correla-

tion-GARCH models? 
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1.4 RESEARCH OBJECTIVES 

This research will cover a class of new copula-based GARCH models, to test whether they have 

a better fit compared to the constant conditional correlation (CCC) GARCH and the dynamic 

conditional correlation (DCC) GARCH models.  

The Gaussian copula function will be implemented in the copula-based GARCH model to esti-

mate the possible dependence structure between spot and futures returns, and to show their 

joint distribution with full flexibility. Two more copula functions will be described in the literature 

review. Various summary statistics will be computed to understand the data and to apply certain 

tests to enable the fit of a proper model. Parameter estimation for the different models will be 

done though maximum likelihood.  

Goodness-of-fit tests are implemented to test how well the selected data fits a specific model. 

The best model will be chosen on the basis of the different information criterions. In this re-

search assignment, the information criterions to be implemented are known as the Akaike, 

Bayesian, Shibata and Hannan-Quinn information criterions. The models will be implemented 

for two hedging scenarios. First, the Top 40 Index will be directly hedged with its own futures, 

and secondly using foreign currency futures to cross hedge the currency exposure of holding 

foreign equity.  

1.5 IMPORTANCE/BENEFITS OF THE STUDY 

The use of hedge funds in personal financial portfolios has increased dramatically since the be-

ginning of the 21st century. Typically, hedge funds are only open to a limited range of profes-

sional or wealthy investors. 

Smith and Stulz (1985:111) suggested that firms hedge to reduce the probability of facing bank-

ruptcy costs. Companies transfer risk to better risk bearers that are diversified and that have 

better access to capital markets. Hedging also leads to increased debt capacity. Since every 

company has an optimal mix of debt and equity financing, hedging transfers some of the com-

pany’s debt to firms outside the company. This enables the firm to undertake a greater amount 

of debt. Companies hedge for a lower tax liability. Lastly, firms in need of financing may choose 

to rely on internal funds only. In order to do so, they have to implement hedging policies that 

would smooth out their cash flows to meet future funding needs. 

Hedging is an important procedure that is starting to become an integral part in today’s busi-

nesses. For this reason investors and companies have to implement the correct hedging strate-

gy for a specific market and product at the correct time. Careful time and consideration has to 

be taken before a hedging decision is made, since every hedge has its cost. The benefits of 

hedging has to outweigh the costs incurred in order to be successful. 
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The copula-based GARCH and DCC GARCH models are implemented to take into considera-

tion that the hedge is constantly changing as time passes. By making this adjustment, individu-

als and companies implementing a dynamic hedging strategy should reduce their potential loss-

es if unfavourable events occur. By the use of copula functions the specifications of the joint dis-

tribution of assets become more precise and the risk exposures of the portfolios, more manage-

able. 

1.6 PROJECT OUTLINE 

Chapter 2 will be an in depth literature review on the construction and derivation of the different 

hedging strategies such as the CCC GARCH, DCC GARCH and the copula-based GARCH-

models that are used for futures hedging. The third chapter consists of the research methodolo-

gy, that will explain how the different methodologies will be implemented. Chapter 4 follows with 

the application of the above literature. In other words each strategy will be applied and the nec-

essary comparisons will be made. This includes the computations and estimation of the copula 

function. The corresponding parameters of each proposed model will be estimated by the use of 

maximum likelihood.  

The following statistics will be computed to enable comparisons: mean, standard deviation, 

skewness, kurtosis, Jarque-Bera statistic, Ljung-Box test statistics and lastly the Lagrange mul-

tiplier statistic. Dickey-Fuller and Johansen tests will also be obtained and the various infor-

mation criterions will be computed. In the final chapter all the conclusions and open ended 

questions will be stated. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Hedging refers to the reduction in risk by exploiting the correlation amongst various risky in-

struments. A range of financial instruments exist such as insurance policies, forward contracts, 

swaps, options, over-the-counter products, derivative products, and futures contracts, which can 

all be used for hedging purposes.  

Dynamic replication for hedging strategies makes use of a more delicate procedure than that 

used for static replication. Sharma, Vaish, Pandey and Gupta (2010:139) argues that for the 

process of dynamic replication, there exists a trading desk that deals with the different transac-

tion costs, liquidity constraints, choosing price development models and all the uncertainties that 

follow.  

Hsu, Tseng and Wang (2008:1098) states that a crucial input in the hedging of risks is the opti-

mal hedge ratio. Hedging risks has become an essential issue. It is vital to determine the opti-

mal amount of hedging instruments. Therefore, the calculation of the optimal hedge ratio plays 

an important role in the hedging process. The optimal hedge ratio is defined as the ratio of fu-

tures holdings to a spot position that minimises the risk of the hedged portfolio. Let 𝑠𝑡 and 𝑓𝑡 be 

the respective changes in the spot and futures prices at time 𝑡. If the joint distribution of spot 

and futures returns remains the same over time, then the conventional risk-minimising hedge 

ratio 𝛿∗, is given by the following equation: 

𝛿∗ =  
𝑐𝑜𝑣(𝑠𝑡, 𝑓𝑡)

𝑣𝑎𝑟(𝑓𝑡)
 

An estimation of this static hedge ratio is simply undertaken from the least squares regression of 

𝑠𝑡 on 𝑓𝑡. Since the expected relationship between economic or financial variables may be better 

captured by a time varying parameter model as opposed to a fixed coefficient model, the opti-

mal hedge ratio can therefore be one that is time varying rather than static. Hatemi-J and Roca 

(2006:295) states that with the arrival of new information, the joint distribution of these assets 

may be time-varying, in which case the static hedging strategy is not suitable for an extension to 

multi-period futures hedging. Hsu, Tseng and Wang (2008:1098) argues that conditional on the 

information set at time 𝑡 − 1, the optimal time-varying hedge ratio is obtained by minimising the 

risk of the hedged return 𝑠𝑡 −  𝛿𝑡−1𝑓𝑡 or as follows: 

𝛿𝑡−1
∗ =  

𝑐𝑜𝑣𝑡−1(𝑠𝑡, 𝑓𝑡)

𝑣𝑎𝑟𝑡−1(𝑓𝑡)
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In the following section various summary statistics that can be used to summarise data, will be 

discussed. Next follows an in depth justification of the three different hedging models namely 

the CCC, DCC and the copula based-GARCH models. The sub sections thereafter entails the 

clarification of parameter estimation, various goodness of fit tests and the different information 

criterions. 

2.2 SUMMARY STATISTICS 

Engle (1982:987) states that it is possible that an uncorrelated time series can still be serially 

dependent due to a dynamic conditional variance process. Therefore, if there is any autocorrela-

tion present in the autoregressive conditional heteroskedastic (ARCH) effects, the series can be 

serially dependent. Engle’s ARCH test is a Lagrange multiplier test to assess the significance of 

the ARCH effects. A time series is stationary if its statistical properties do not vary with time. 

The Augmented Dickey-Fuller test, tests whether there is a unit root present in the data, that is, 

it tests for non-stationarity. The Johansen test, tests for co-integration in the data. It is an im-

portant test to implement since ignoring co-integration aspects in a time series may lead to a 

spurious regression problem, which occurs if arbitrarily trending or non-stationary series are re-

gressed on each other. 

2.2.1 Lagrange Multiplier Statistic 

Trench (1987:2) argues that Lagrange multipliers enable the capability to maximise or minimise 

functions with the limitation that only points on a certain surface is considered. To find the criti-

cal points of a function 𝑓(𝑥, 𝑦, 𝑧) on a level surface 𝑔(𝑥, 𝑦, 𝑧) = 𝐶, the following system of simul-

taneous equations has to be solved: 

∇𝑓(𝑥, 𝑦, 𝑧) =  𝜆∇g(x, y, z) 

𝑔(𝑥, 𝑦, 𝑧) = 𝐶 

Remembering that ∇𝑓 and ∇𝑔 represents vectors, it can be written as a collection of four equa-

tions in the four unknowns 𝑥, 𝑦, 𝑧 and 𝜆: 

𝑓𝑥(𝑥, 𝑦, 𝑧) =  𝜆𝑔𝑥(𝑥, 𝑦, 𝑧) 

𝑓𝑦(𝑥, 𝑦, 𝑧) =  𝜆𝑔𝑦(𝑥, 𝑦, 𝑧) 

𝑓𝑧(𝑥, 𝑦, 𝑧) =  𝜆𝑔𝑧(𝑥, 𝑦, 𝑧) 

𝑔(𝑥, 𝑦, 𝑧) = 𝐶 

The variable 𝜆 is a dummy variable known as the Lagrange multiplier, however only the values 

of 𝑥, 𝑦 and 𝑧 are actually important. Once all the critical point values are obtained, substitute 

them into 𝑓 to see where the maxima and minima are located. The critical points where 𝑓 is the 
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greatest are called the maxima and the critical points where 𝑓 is smallest are known as the min-

ima. 

2.2.2 Dickey-Fuller Test 

Cryer and Chan (2010:201) states that a Augmented Dickey–Fuller test (ADF) is a test for a unit 

root in a time series sample. There are three methods for testing for a unit root in a time series. 

1. Testing the model without a constant term 

2. Testing the model with a constant term 

3. Testing the model with a linear time trend 

Consider the following hypothesis for the Augmented Dickey-Fuller t-test 

𝑯𝟎:  휃 = 1 

𝑯𝟏:  휃 < 1 

The Dickey-Fuller test statistic is then defined as: 

𝐷𝐹 ≡ 𝑡 − 𝑟𝑎𝑡𝑖𝑜 =  
휃̂ − 1

𝑠𝑡𝑑(휃̂)
 

The null hypothesis of a unit root is rejected when the test statistic 𝐷𝐹 is lower than the corre-

sponding critical value. However if the null hypothesis cannot be rejected the series should be 

differenced. 

2.2.3 Johansen Test 

A Johansen Test refers to a procedure for testing co-integration in several vectors of variables 

that are integrated of order one, generally denoted as 𝐼(1). This test allows more than one co-

integrating relationship making it more generally appropriate (Hjalmarsson & Österholm, 

2007:4). 

Johansen’s methodology takes its starting point in a vector autoregression (VAR) of order 𝑝 giv-

en by: 

𝑦𝑡 =  𝜇 + 𝐴1𝑦𝑡−1 + ⋯ + 𝐴𝑝𝑦𝑡−𝑝 + 휀𝑡      

where, 𝑦𝑡 denotes an 𝑛×1 vector of variables that are integrated of order one, and 휀𝑡 denotes 

an 𝑛×1 vector of innovations. Now VAR can be rewritten as follows: 

∆𝑦𝑡 =  𝜇 + Π𝑦𝑡−1 + ∑ Γ𝑖Δ𝑦𝑡−𝑖 + 휀𝑡

𝑝−1

𝑖=1

 

where, Π =  ∑ 𝐴𝑖 − 𝐼
𝑝
𝑖=1  and Γ𝑖 =  − ∑ 𝐴𝑗

𝑝
𝑗=𝑖+1 . 

https://en.wikipedia.org/wiki/Unit_root
https://en.wikipedia.org/wiki/Unit_root
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Sample_(statistics)
https://en.wikipedia.org/wiki/Cointegration
https://en.wikipedia.org/wiki/Order_of_integration
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If the coefficient matrix Π has a reduced rank of 𝑟 < 𝑛, then there exists 𝑛×𝑟 matrices 𝛼 and 𝛽 

each with rank 𝑟 such that Π =  𝛼𝛽′ and 𝛽′𝑦𝑡 is stationary. Here 𝑟 denotes the number of co-

integrating relationships, the elements of 𝛼 are known as the adjustment parameters and each 

column of 𝛽 is a co-integrating vector (Hjalmarsson & Österholm, 2007:4). 

There are two kinds of Johansen tests: 

1. The trace test: 

𝐽𝑡𝑟𝑎𝑐𝑒 =  −𝑇 ∑ ln (1 − �̂�𝑖)

𝑛

𝑖=𝑟+1

 

2. Maximum eigenvalue test: 

𝐽𝑚𝑎𝑥 =  −𝑇𝑙𝑛(1 − �̂�𝑟+1)  

where, 𝑇 denotes the sample size and �̂�𝑖 denotes the 𝑖𝑡ℎ largest canonical correlation. The trace 

test tests the null hypothesis of 𝑟 co-integrating vectors against the alternative hypothesis of 𝑛 

co-integrating vectors. The maximum eigenvalue test, conversely, tests the null hypothesis of 𝑟 

co-integrating vectors against the alternative hypothesis of 𝑟 + 1 co-integrating vectors. Neither 

of these test statistics follows a chi-square distribution in general, therefore asymptotic critical 

values can be found in Johansen and Juselius (1990). Subsequently the critical values used for 

the maximum eigenvalue and trace test statistics are grounded on a pure unit-root assumption, 

and they will therefore no longer be correct when the variables in the system are near-unit-root 

processes (Hjalmarsson & Österholm, 2007:5). 

2.3 GARCH - GENERAL AUTOCORRELATED CONDITIONAL HETEROSKEDASTICITY 

Peters (2008:4) argues that in the financial industry volatility is an imperative concept that 

measures the state of uncertainty in returns. It is known that volatility fluctuates over time and 

has a tendency to cluster in times of large volatility and times of low volatility. This phenomenon 

is known as heteroskedasticity. Another aspect to take account for is that volatility has made 

known to be autocorrelated, that is, that today’s volatility depends on the volatilities in the past. 

Bearing in mind that volatility is not directly observable in the market the necessity for a good 

model to help estimate and forecast is vital. A type of model that captures the above properties 

is known as a GARCH -General Autocorrelated Conditional Heteroskedasticity model. This 

model has proven to be successful in estimating and predicting volatility changes. Now follows 

the three different GARCH models that will be considered in this study. 



20 

 

2.3.1 Constant Conditional Correlation (CCC)-GARCH Model 

Peters (2008:5) argues that the conditional correlations were anticipated to be constant and that 

only the conditional variances were time varying. Meanwhile correlation in practice for many as-

sets changes as time moves forward, therefore assumption that the conditional correlation is 

constant over time is not convincing. 

The CCC GARCH model is a model in which the volatility of an asset is defined only through 

lagged squared innovations and volatility of its own. Nakatani and Teräsvirta (2009:147) argues 

that the investigation of interdependence in volatility is imperative for portfolio risk management 

on the one hand, and is necessary for research on the degree of market integration on the oth-

er. A great number of researchers have found sufficient evidence that the conditional variances 

of financial time series are interacting. In the CCC GARCH model, co-movements between het-

eroskedastic time series are modelled by permitting each series to follow a separate GARCH 

process while limiting the conditional correlations between the GARCH processes to be con-

stant (Teräsvirta, 2012:1). 

Although the CCC GARCH model has clear computational advantages over the multivariate 

GARCH (BEKK) model of Engle and Kroner (1995), the correlation structure between the spot 

and futures markets is quite restricted. 

Kroner and Sultan (1993) proposed the following bivariate error-correction model of 𝑠𝑡 and 𝑓𝑡 

with a constant correlation GARCH(1,1) structure for the estimation of 𝛿𝑡
∗: 

 𝑆𝑡 =  𝛼0𝑠 + 𝛼1𝑠(𝑆𝑡−1 − 𝜆𝐹𝑡−1) +  휀𝑠𝑡     

 𝑓𝑡 =  𝛼0𝑓 + 𝛼1𝑓(𝑆𝑡−1 − 𝜆𝐹𝑡−1) +  휀𝑓𝑡  

 [
휀𝑠𝑡

휀𝑓𝑡
]| 𝚿𝑡−1 ~ 𝑁(0, 𝐻𝑡)   

 𝐻𝑡 =  [
ℎ𝑠,𝑡

2 ℎ𝑠𝑓,𝑡

ℎ𝑠𝑓,𝑡 ℎ𝑓,𝑡
2 ] =  [

ℎ𝑠,𝑡 0

0 ℎ𝑓,𝑡
] [

1 𝜌
𝜌 1

] [
ℎ𝑠,𝑡 0

0 ℎ𝑓,𝑡
] =  𝐷𝑡𝑅𝐷𝑡   

 ℎ𝑠,𝑡
2 =  𝑐𝑠 + 𝑎𝑠휀𝑠,𝑡−1

2 + 𝑏𝑠ℎ𝑠,𝑡−1
2        

 ℎ𝑓,𝑡
2 =  𝑐𝑓 + 𝑎𝑓휀𝑓,𝑡−1

2 + 𝑏𝑓ℎ𝑓,𝑡−1
2        

Where 𝑆𝑡−1 and 𝐹𝑡−1 represents the corresponding spot and futures prices, and 𝑆𝑡−1 − 𝜆𝐹𝑡−1 de-

notes the error-correction term, 𝚿𝑡−1 denotes the information set at time 𝑡 − 1, and the disturb-

ance term is given by the following equation 휀𝑡 = (휀𝑠𝑡 , 휀𝑓𝑡)′  follows a bivariate normal distribu-

tion with zero mean and a conditional covariance matrix 𝐻𝑡 with a constant correlation 𝜌. 

The GARCH term allows the hedge ratio to be time-varying, while the error-correction term 

characterises the long-run connection between the spot and futures prices. The theory of a con-

stant correlation model may be too restrictive to be in line with actuality. The DCC GARCH 
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model was introduced by Engle and Sheppard (2001) and Engle (2002) to liberate this re-

striction and improve the elasticity of the hedging models (Hsu, Tseng & Wang, 2008:1096). 

2.3.2 Dynamic Conditional Correlation (DCC)-GARCH Model 

Engle and Sheppard (2001) introduced the dynamic conditional correlation (DCC) model as a 

means of considering the flexible correlation structure between assets. Engle (2002:1) states 

that these models have the flexibility of univariate GARCH models together with parsimonious 

parametric models for the correlations. 

The DCC model has a two-step algorithm to estimate the parameters that makes the model rel-

atively simple to implement in practice. In the first step, the conditional variances are estimated 

via a univariate GARCH model. In the second step the parameters for the conditional correlation 

given the parameters from the first step are estimated. Peters (2008:5) argues that this method 

makes it possible to estimate covariances of a large amount of assets without too much chal-

lenging computations. Finally, the DCC model includes conditions that make the covariance ma-

trix positive definite at all points in time. 

However, the DCC model assumes that the spot and futures returns follow a multivariate normal 

distribution with linear dependence. Hsu, Tseng and Wang (2008:1096) argues that numerous 

empirical studies have shown that numerous financial asset returns are skewed, leptokurtic, and 

asymmetrically dependent, which contradicts the statement above. For example, the volatility of 

an assets return refers to the standard deviation of the changes in value during a specific time 

horison. In the long run returns tend to move towards a mean value (mean reverting). The 

changes in value that appears during these times are both positive and negative (asymmetric), 

mostly close to the mean value but some changes obtain extreme values (leptokurtic). As men-

tioned above, the volatility of today’s returns is conditional on the past volatility and tends to 

cluster (Peters, 2008:6). Hence, these characteristics should be considered in the specifications 

of any effective hedging model. 

In contrast with the CCC GARCH model, the DCC GARCH model allows the correlation 𝑅 to be 

time-varying: 

From (1) it follows, that: 

 𝐻𝑡 =  𝐷𝑡 𝑅𝑡 𝐷𝑡 =  𝐷𝑡  𝐽𝑡 𝒬𝑡  𝐽𝑡 𝐷𝑡      

where 𝐷𝑡 represents the diagonal matrix of conditional standard deviations from univariate 

GARCH models, 𝒬𝑡 =  (𝑞𝑖𝑗,𝑡)2×2 is a positive definite matrix, 𝐽𝑡 = 𝑑𝑖𝑎𝑔{𝑞𝑠,𝑡
−2 

1

, 𝑞𝑓,𝑡
−2

1

}, and 𝒬𝑡 sat-

isfies the following: 

 𝒬𝑡 = (1 − 휃1 − 휃2) �̅� + 휃1 휁𝑡−1 휁𝑡−1 + 휃2 𝒬𝑡−1    

Where, 휃1 and 휃2 are non-negative parameters that satisfy the following restriction 휃1 + 휃2 < 1. 
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2.3.3 Copula-Based GARCH Model 

Hsu, Tseng and Wang (2008:1096) states that a new copula-based GARCH model will be pre-

sented for the estimation of an optimal hedge ratio. Without the assumption of multivariate nor-

mality, the joint distribution can be split into its marginal distributions and a copula. 

The marginal distributions can be any non-elliptical distribution, while the copula function de-

scribes the dependence structure between the spot and futures returns. The proposed hedging 

model uses the GJR-skewed-t (Glosten, Jagannathan, and Runkle) specification for the margin-

al distributions. Including the three different copulas namely the Gaussian, Gumbel, and Clayton 

for the joint distribution to allow a wide range of possible dependence structures. The depend-

ence parameters in these copulas are modelled as time-varying processes to capture possible 

dynamic and nonlinear relationships between the spot and futures returns. 

Hsu, Tseng and Wang (2008:1100) argues that a copula function enables the consideration of 

the marginal distributions and the dependence structures both separately and simultaneously. 

Therefore, the joint distribution can be specified with full elasticity with respect to asset returns, 

which will correspond to a more reasonable outcome. Glosten, Jagannathan, and Runkle (1993) 

and Hansen (1994), specifies the GJR-skewed-t models for shocks in the spot and futures re-

turns. The model specifications are as follows: 

 The conditional variance for asset 𝑖, 𝑖 = 𝑠, 𝑓, is given by 

 ℎ𝑖,𝑡
2 = 𝑐𝑖 + 𝑏𝑖ℎ𝑖,𝑡−1

2 + 𝑎𝑖,1휀𝑖,𝑡−1
2 + 𝑎𝑖,2𝑘𝑖,𝑡−1휀𝑖,𝑡−1

2  

 휀𝑖,𝑡|Ψt−1 = hi,t𝓏i,t           where  𝓏i,t ~ skewed − t(𝓏i|ηi, ϕi)   

  

with 𝑘𝑖,𝑡−1 = 1 when 휀𝑖,𝑡−1 is negative, else 𝑘𝑖,𝑡−1 = 0. 

The density function of the skewed-t distribution is 

 𝑠𝑘𝑒𝑤𝑒𝑑 − 𝑡(𝓏|휂, 𝜙) = {
𝑏𝑐( 1 +

1

𝜂−2
(

𝑏𝑧+𝑎

1−𝜙
)2)−𝜂+

1

2 ,    𝓏 < −
𝑎

𝑏

𝑏𝑐( 1 +
1

𝜂−2
(

𝑏𝑧+𝑎

1+𝜙
)2)−𝜂+

1

2   , 𝓏 ≥ −
𝑎

𝑏

  

The values of a, b, and c are defined as 

 𝑎 ≡ 4 𝜙 𝑐 
𝜂−2

𝜂−1
               𝑏 ≡ 1 + 3𝜙2 − 𝑎2                      𝑐 ≡  

Γ(η+
1

2
)

√𝜋(𝜂−2)Γ(
𝜂

2
)
 

Where, 휂 denotes the kurtosis parameter and 𝜙 is the asymmetry parameter. These parameters 

are limited to the following restriction 4 < 휂 < 30 and −1 < 𝜙 < 1. Therefore, the particular mar-

ginal distributions of spot and futures returns are asymmetric, fat-tailed and non-Gaussian. 
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Assume that the conditional cumulative distribution functions of 𝓏𝑠 and 𝓏𝑓 are 𝐺𝑠,𝑡(𝓏𝑠,𝑡|Ψt−1) and 

𝐺𝑓,𝑡(𝓏𝑓,𝑡|Ψ𝑡−1), respectively. The conditional copula function, denoted as 𝐶𝑡(𝑢𝑡, 𝑣𝑡|Ψ𝑡−1), is de-

fined by the two time-varying cumulative distribution functions of random variables 𝑢𝑡 =

𝐺𝑠,𝑡(𝓏𝑠,𝑡|Ψ𝑡−1) and 𝑣𝑡 = 𝐺𝑓,𝑡(𝓏𝑓,𝑡|Ψ𝑡−1). Let 𝜑𝑡 be the bivariate conditional cumulative distribution 

functions of 𝓏𝑠,𝑡and 𝓏𝑓,𝑡. 

Hsu, Tseng and Wang (2008:1101) states that using Sklar’s theorem, the following is obtained  

 Φ𝑡(𝓏𝑠,𝑡 , 𝓏𝑓,𝑡|Ψ𝑡−1) =  𝐶𝑡(𝑢𝑡, 𝑣𝑡|Ψ𝑡−1) 

    =  𝐶𝑡(𝐺𝑠,𝑡(𝓏𝑠,𝑡|Ψ𝑡−1), 𝐺𝑓,𝑡(𝓏𝑓,𝑡|Ψ𝑡−1)|Ψ𝑡−1)    

The bivariate conditional density function of 𝓏𝑠,𝑡 and 𝓏𝑓,𝑡 can be constructed as  

 𝜑𝑡(𝓏𝑠,𝑡 , 𝓏𝑓,𝑡|Ψ𝑡−1) =  𝑐𝑡(𝐺𝑠,𝑡(𝓏𝑠,𝑡|Ψ𝑡−1), 𝐺𝑓,𝑡(𝓏𝑓,𝑡|Ψ𝑡−1)|Ψ𝑡−1)    (5) 

   ×𝑔𝑠,𝑡(𝓏𝑠,𝑡|Ψ𝑡−1) × 𝑔𝑓,𝑡(𝓏𝑓,𝑡|Ψ𝑡−1)                

Where 𝑐𝑡(𝑢𝑡, 𝑣𝑡 |Ψ𝑡−1) =  
𝜕2𝐶𝑡(𝑢𝑡,𝑣𝑡|Ψ𝑡−1)

𝜕𝑢𝑡,𝜕𝑣𝑡,𝑔𝑠,𝑡(𝓏𝑠,𝑡|Ψ𝑡−1)
 is the conditional density of 𝓏𝑠,𝑗, and 𝑔𝑓,𝑡(𝓏𝑓,𝑡|Ψ𝑡−1) 

is the conditional density of 𝓏𝑓,𝑡. 

2.3.3.1 Copulas 

Patton (2007:2) states that the variance of the return on a portfolio of risky assets depends on 

the variances of the individual assets and on the linear correlation amongst the assets in the 

portfolio. In general, the distribution of the return on a portfolio depends on the univariate distri-

butions of the individual assets in the portfolio and on the dependence between each of the as-

sets, which is captured by a function known as a copula. 

A copula is a function that links together univariate distribution functions to form a multivariate 

distribution function. If all the variables are continuously distributed, then their copula is merely a 

multivariate distribution function with 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) univariate marginal distributions. Consider a 

random vector, 𝑿 = [𝑋1, 𝑋2, … , 𝑋𝑛]′, with joint distribution 𝑭 and marginal distributions 

𝐹1, 𝐹2, … , 𝐹𝑛. Sklar’s theorem provides the mapping from the individual distribution functions to 

the joint distribution function: 

  𝐹(𝑥) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)),    ∀  𝑥 ∈  ℝ𝑛   (1) 

From any multivariate distribution, 𝑭, the marginal distributions, 𝐹𝑖, can be extracted as well as 

the copula, 𝑪. Given any set of marginal distributions (𝐹1, 𝐹2, … , 𝐹𝑛) and any copula 𝑪, equation 

(1) can be used to find a joint distribution with the given marginal distributions. A significant fea-

ture of this outcome is that the marginal distributions do not need to be similar in any way to one 
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another, neither is the choice of the copula constrained by the choice of the marginal distribu-

tions.  

Since each marginal distribution, 𝐹𝑖, holds all of the univariate information on the individual vari-

able 𝑋𝑖, while the joint distribution 𝑭 holds all the univariate and multivariate information, it is 

clear that the information contained in the copula 𝑪 must be all of the dependence information 

between the 𝑋𝑖′𝑠. Therefore, copulas are occasionally also known as dependence functions. 

Also note that if 𝑈𝑖 is defined as the probability integral transform of 𝑋𝑖, i.e. 𝑈𝑖 ≡  𝐹𝑖(𝑋𝑖), then 

𝑈𝑖  ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1). It can be shown that 𝑼 = [𝑈1,𝑈2, … , 𝑈𝑛]′ ~ 𝑪, the copula of 𝑿. If the joint dis-

tribution function is 𝑛-times differentiable, then taking the 𝑛𝑡ℎ cross partial derivative of equation 

(1) the following is obtained: 

𝒇(𝑥)   =   
𝜕𝑛

𝜕𝑥1
𝜕𝑥2

… 𝜕𝑥𝑛

 𝑭(𝑥) 

            =   ∏  𝑓𝑖(𝑥𝑖)  ∙  
𝜕𝑛

𝜕𝑢1
𝜕𝑢2 … 𝜕𝑢𝑛

  𝑪

𝑛

𝑖=1

(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)) 

            =   ∏ 𝑓𝑖(𝑥𝑖)  ∙ 𝒄 (𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛))

𝑛

𝑖=1

       

From the above it is clear that the joint density is equal to the product of the marginal densities 

and the copula density denoted by 𝒄. This also indicates that the joint log-likelihood is simply the 

sum of the univariate log-likelihoods and the copula log-likelihood, which is essential in the es-

timation of copula-based models: 

log 𝒇(𝑥) =  ∑ log 𝑓𝑖(𝑥𝑖) + log 𝒄 (𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛))

𝑛

𝑖=1

 

Patton (2007:3) states that the decomposition of a joint distribution into its marginal distributions 

and a copula allows a great deal of flexibility in identifying a model for the joint distribution. This 

is an advantage when the shape and goodness-of-fit of a model for the joint distribution is of 

primary interest. When accumulated knowledge is available about the distributions of specific 

variables and using that knowledge in constructing a joint distribution, then copulas also play a 

valuable part. 

2.3.3.2 Applications of copulas in finance 

The incentive for the use of copulas in finance originates from the increased empirical evidence 

that the dependence between important asset returns is non-normal. An example of non-normal 

dependence is when two asset returns show greater correlation during market declines than 

during market expansions. Asset returns exhibit non-normal dependence when the dependence 
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is not consistent with a normal copula. The suggestion that dependence between asset returns 

are non-normal has wide-ranging implications for financial decision making, in risk manage-

ment, multivariate option pricing, portfolio decisions and credit risk (Patton, 2007:11). 

2.3.3.3 Gaussian Copula 

Aas (2004:2) states that implicit copulas do not have a simple closed form, but are inferred by 

using well-known multivariate distribution functions. An example of an implicit copula is the 

Gaussian copula. The Gaussian copula is a distribution over the unit cube [0, 1]𝑑. It is con-

structed from a multivariate normal distribution over ℝ𝑑 by making use of the probability integral 

transform. 

The Gaussian copula follows as: 

𝐶𝜌(𝑢, 𝑣) =  ∫ ∫
1

2𝜋(1 − 𝜌2)
1
2

 𝑒𝑥𝑝 {−
𝑥2 − 2𝜌𝑥𝑦 + 𝑦2

2(1 − 𝜌2)
}  𝑑𝑥𝑑𝑦

Φ−1(𝑢)

−∞

Φ−1(𝑢)

−∞

 

where 𝜌 denotes the parameter of the copula, and Φ−1(∙) denotes the inverse of the standard 

univariate Gaussian distribution function. 

2.3.3.4 Gumbel Copula 

Aas (2004:3) argues that there are a number of copulas which are not derived from multivariate 

distribution functions, but do have simple closed forms. Well-known explicit copulas are the 

Clayton and Gumbel copulas. The Gumbel copula is used to model asymmetric dependence in 

data. This copula is well-known for its capability to capture strong upper tail dependence and 

weak lower tail dependence. If the outcomes are likely to be greatly correlated at high values 

but less correlated at low values, then the Gumbel copula is a suitable choice (Mahfoud, 

2012:19). 

Aas (2004:3) claims that the Gumbel copula shows greater dependence in the positive tail than 

in the negative. This copula is given as follows:  

𝐶𝛿(𝑢, 𝑣) = exp (−[(− log 𝑢 )𝛿 + (− log 𝑣 )𝛿]
1
𝛿 ) 

where, 0 < 𝛿 ≤ 1 is a parameter controlling the dependence. Perfect dependence is achieved 

if 𝛿 → 0, while 𝛿 = 1 implies independence. 

2.3.3.5 Clayton Copula 

Mahfoud (2012:18) states that Clayton first introduced the Clayton copula in 1978. It is typically 

used to study correlated risks because of their ability to capture lower tail dependence. Aas 

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Probability_integral_transform
https://en.wikipedia.org/wiki/Probability_integral_transform
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(2004:3) argues that the Clayton copula, which is an asymmetric copula, shows greater de-

pendence in the negative tail than in the positive. This copula is given by the following: 

𝐶𝛿(𝑢, 𝑣) = (𝑢−𝛿 + 𝑣−𝛿 − 1)− 
1
𝛿 

 Where, 0 < 𝛿 < ∞ is a parameter controlling the dependence. Perfect dependence is obtained 

if 𝛿 → ∞, while 𝛿 = 0 implies independence. 

2.4 PARAMETER ESTIMATION 

Hsu, Tseng and Wang (2008:1102) states that the model parameters are estimated by use of 

the maximum likelihood method. Thus at time 𝑡, the log-likelihood function can be derived by 

taking the logarithm of equation (5) in section 2.3.3. 

   𝑙𝑜𝑔𝜑𝑡 = 𝑙𝑜𝑔𝑐𝑡 + 𝑙𝑜𝑔 𝑔𝑠,𝑡 + log 𝑔𝑓,𝑡∗     

Let the parameters in 𝑔𝑠,𝑡 and 𝑔𝑓,𝑡 be denoted as 휃𝑠 and 휃𝑓, whereas the parameters in 𝑐𝑡 are 

denoted as 휃𝑐. These parameters can therefore be estimated by maximising the following log-

likelihood function: 

𝐿𝑠,𝑓(휃) = 𝐿𝑠(휃𝑠) + 𝐿𝑓(휃𝑓) + 𝐿𝑐(휃𝑐)     

where, 휃 = (휃𝑠, 휃𝑓 , 휃𝑐) and 𝐿𝑘 represents the sum of the log-likelihood function values across 

observations of the variable 𝑘 (Hsu, Tseng & Wang, 2008:1101).  

As the dimensions of the estimated equation may be quite large, it is difficult in practice to 

achieve a simultaneous maximisation of 𝐿𝑠,𝑡(휃) for all of the parameters. To solve this problem 

successfully, the two-step estimation procedure is used. 

In the first step, the parameters of the marginal distribution are estimated from the univariate 

time series by: 휃̂𝑆 =  ∑ log 𝑔𝑠,𝑡(𝓏𝑠,𝑡|Ψ𝑡−1; 휃𝑆)𝑇
𝑡=1  

휃̂𝑓 =  ∑ log 𝑔𝑓,𝑡(𝓏𝑓,𝑡|Ψ𝑡−1; 휃𝑓)𝑇
𝑡=1     

In the second step, given the marginal estimates obtained above, the dependence parameters 

are estimated by:  휃̂𝑐 =  ∑ log 𝑐𝑡(Ψ𝑡−1; 휃̂𝑆, 휃̂𝑓 , 휃𝑐)𝑇
𝑡=1   

2.5 GOODNESS-OF-FIT TESTS 

Olivares and Garcia-Forero (2010:190) states that the goodness-of-fit (GOF) of a statistical 

model describes how well it fits into a set of observations. GOF indices summarise the discrep-

ancy between the observed values and the values expected under a statistical model. GOF sta-

tistics are GOF indices with known sampling distributions, usually obtained using asymptotic 

methods that are used in statistical hypothesis testing. This section introduces two GOF tests to 
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consider in the modelling of the data. The Jarque–Bera tests for normality. And as an alternative 

to Engle’s ARCH test, serial dependence (ARCH effects) in a residual series can be tested by 

conducting a Ljung-Box Pierce tests on the first 𝑚 lags of the residual series and the squared 

residual series.  

2.5.1 Jarque-Bera Test 

The Jarque–Bera test is one of the various goodness-of-fit tests. It tests whether the selected 

sample data has a skewness and kurtosis value corresponding to that of the normal distribution. 

The Jarque-Bera test for normality is defined as follows: 

Consider testing the following hypothesis 

𝑯𝟎:   𝑁𝑜𝑟𝑚𝑎𝑙 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛     (𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 𝑎𝑛𝑑 𝐸𝑥𝑐𝑒𝑠𝑠 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 𝑒𝑞𝑢𝑎𝑙𝑠 𝑧𝑒𝑟𝑜) 

𝑯𝟏:   𝑁𝑜𝑛 − 𝑛𝑜𝑟𝑚𝑎𝑙 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

The Jarque-Bera test statistic is then defined as: 

𝐽𝐵 = 𝑛 ∙ [
𝑆2

6
+

(𝐸𝐾)2

24
] 

where, 𝑛 denotes the number of observations in the dataset, 𝑆 represents the sample skewness 

and 𝐸𝐾 indicates the excess kurtosis: 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  𝑆 =  
�̂�3

�̂�3
=  

1
𝑛

∑ (𝑥𝑖 − �̅�)3𝑛
𝑖=1

(
1
𝑛

∑ (𝑥𝑖 − �̅�)2)
3
2𝑛

𝑖=1

 

𝑆𝑎𝑚𝑝𝑙𝑒 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  𝐾 =  
�̂�4

�̂�4
=  

1
𝑛 ∑ (𝑥𝑖 − �̅�)4𝑛

𝑖=1

( 
1
𝑛 ∑ (𝑥𝑖 − �̅�)2)2𝑛

𝑖=1

 

𝐸𝑥𝑐𝑒𝑠𝑠 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  𝐸𝐾 = 𝐾 − 3 

In the equations above, �̂�3 and �̂�4 denotes the estimates of third and fourth central moments, 

respectively, �̅� denotes the sample mean, and �̂�2 indicates the estimate of the variance. If the 

data originates from a normal distribution, the 𝐽𝐵 test statistic asymptotically has a chi-squared 

distribution with two degrees of freedom. Thus the 𝐽𝐵 −statistic can be used to test the hypothe-

sis of whether the data originates from a normal distribution. The null hypothesis is a joint hy-

pothesis of the skewness and the excess kurtosis equaling zero. Samples from a normal distri-

bution have an expected skewness and an expected excess kurtosis equal to zero. Therefore 

https://en.wikipedia.org/wiki/Goodness-of-fit
https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis
https://en.wikipedia.org/wiki/Central_moment
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Asymptotic_analysis
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Excess_kurtosis
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the null hypothesis of normality is rejected if the calculated test statistic exceeds the critical val-

ue from a 𝜒2
2 ~ distribution (Domański, 2010:76). 

2.5.2 Ljung-Box-Pierce test 

A set of 𝑚 autocorrelations can be tested at once by making use of the Ljung-Box-Pierce test. 

Consider the following hypothesis test: 

𝑯𝟎:  𝜌𝑘 = 0     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≤ 𝑚 

𝑯𝟏:  𝜌𝑘 ≠ 0     𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑘 𝑤ℎ𝑒𝑟𝑒 𝑘 ≤ 𝑚 

The Ljung-Box-Pierce test statistic is then defined as: 

𝒬 = 𝑇(𝑇 + 2) ∑
𝑟𝑘

2

𝑇 − 𝑘

𝑚

𝑘=1

 ~ 𝜒𝑚
2  

for each 𝑚, where 𝑚 denotes the number of autocorrelations to be tested, 𝑇 is the number of 

observations in a time series and 𝑟𝑘 denotes the observed autocorrelations. The null hypothesis 

is rejected if the test statistic 𝒬 exceeds the critical value from a 𝜒𝑚
2 ~ distribution. If the null 

hypothesis is rejected the conclusion is that the series is not random, in other words it is not a 

white noise process. However if the null hypothesis is not rejected there is some support that 

the series fits a white-noise model.  

Autocorrelation is defined as the cross-correlation of an observation with itself at different points 

in time. Informally, it is the similarity between observations as a function of the time lag between 

them. It is a mathematical tool for discovering repeating patterns (Cryer & Chan, 2010:150). 

2.6 INFORMATION CRITERION 

Information criterions refer to a measure of the relative quality of a statistical model for a given 

set of data. Given a collection of models for the data, the various information criterions estimate 

the quality of each model, relative to each of the other models. Hence, information criterions are 

tools for appropriate model selection. 

2.6.1 Akaike Information Criteria 

Cavanaugh (2012:13-16) argues that the Akaike information criterion (AIC) represents a meas-

ure of the quality of statistical models for a given dataset. AIC is a means for model selection 

and it originated through information theory. Assume that there is a statistical model of some 

data. Let 𝐿 denote the maximised value of the likelihood function of the model and 𝑘 the number 

of estimated parameters in the model. The AIC of the model then follows as: 

𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿) 

https://en.wikipedia.org/wiki/Cross-correlation
https://en.wikipedia.org/wiki/Signal_(information_theory)
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Model_selection
https://en.wikipedia.org/wiki/Information_theory
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Parameter
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Given a set of possible models for the given data, the preferred model is then the one with the 

smallest AIC value. Thus AIC rewards goodness of fit, but it also contains a penalty that is an 

increasing function of the number of estimated parameters, in other words the penalty discour-

ages overfitting. 

2.6.2 Bayes Information Criteria 

Bayesian information criterion (BIC) or also known as the Schwarz criterion denotes a criterion 

for model selection between a finite set of models. Cavanaugh (2012:1) claims that the model 

with the smallest BIC value will be preferred. It is based on the likelihood function. The BIC of 

the model then follows as: 

𝐵𝐼𝐶 =  −2 ∙ ln (𝐿) + 𝑘 ∙ 𝑙𝑛(𝑛) 

where, 𝐿 ≡  maximised value of the likelihood function 

            𝑘 ≡  the number of free parameters to be estimated 

            𝑛 ≡ the number of observations 

2.6.3 Shibata Information Criteria 

Kadilar and Erdemir (2002:128) claims that Shibata investigated the asymptotic properties of 

Akaike’s estimate and proved that the AIC does not produce a consistent estimate of the order 

of an autoregressive model. The Shibata Criterion of the model then follows as: 

𝑆𝑘 = ( 1 + 2 ∙
𝑑𝑘+1

𝑛
 )𝑑 ∙ |∑ ∙𝑘 |  

where,      ∑ ∙𝑘  ≡  𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 

                    𝑛 ≡ the number of observations 

                    𝑑 ≡ dimension 

                    𝑘 ≡ number of orders of the series 

2.6.4 Hannan-Quinn Information Criteria 

Tu and Xu (2012:1) states that the Hannan–Quinn information criterion (HQC) denotes a criteri-

on for model selection. The HQC of the model then follows as: 

𝐻𝑄𝐶 =  −2 ∙ 𝐿 + 2 ∙ 𝑘 ∙ 𝑙𝑜𝑔 ∙ log (𝑛) 

where, 𝐿 ≡ 𝑙𝑜𝑔 − 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 

            𝑘 ≡ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

            𝑛 ≡ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 

https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Model_selection
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Parameter
https://en.wikipedia.org/wiki/Model_selection
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2.7 SUMMARY 

In this chapter, introductory concepts that are used in hedging strategies were discussed. The 

different hedging models were explained as well as a brief explanation of different summary sta-

tistics. Followed by two different goodness-of-fit tests and the different information criterions. In 

the chapters that follow, the literature of this chapter will be implemented. Chapter 3 entails the 

explanation of the research methodology, followed by the empirical results in Chapter 4. Chap-

ter 5 concludes the research assignment and finishes off with some open questions. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 INTRODUCTION 

This chapter entails the research methodology implemented to calculate the goodness-of-fit for 

the three different hedging models. The focus is primarily on the fitting of the hedging models 

and the estimation of their parameters, which enables the calculation of the respective infor-

mation criterions for model selection. The proposed methodologies are applied to calculate the 

results indicated in Chapter 4. 

3.2 DESCRIPTION OF DATA 

In the sections that follow, the GOF of the various hedging models will be examined for a stock 

index and for currency futures. The stock index that will be considered is known as the Top 40 

index. To emphasize the effectiveness of the copula-based GARCH model, it may be more in-

teresting to consider an application for which the futures are less correlated with the underlying 

asset. Therefore, the performance of the various models are compared by cross hedging the 

currency exposure of holding the MSCI-Rand index with USD/ZAR futures.  

All the data used in this research assignment was obtained from Bloomberg and Capital Syner-

gy. The Top 40 data and its futures runs from 4 January 2010 to 31 December 2014. The MSCI-

Rand and USD/ZAR data runs from 16 September 2013 to 19 August 2015. The futures com-

prise of 6-month futures contracts and are rolled over. The asset returns are represented by the 

changes in the logarithm of the daily closing prices.  

3.3 R – PACKAGES USED IN THIS STUDY 

The core packages necessary to conduct this research assignment are the following: zoo, 

rmgarch, timeSeries, fAssets, xlsx, FinTS, fGarch, MTS, DistributionUtils, copula, tseries, mo-

ments and urca. Next, an explanation of the essential packages are discussed. 

3.3.1 Package: rmgarch 

The rmgarch package provides various multivariate GARCH models with methods for fitting, 

filtering, forecasting and simulating. It consists of feasible multivariate GARCH models including 

DCC-GARCH, GO-GARCH and Copula-GARCH models. At present, the Dynamic Conditional 

Correlation (with multivariate Normal, Laplace and Student distribution) models are fully imple-

mented, with methods for spec, fit, filter, forecast, simulation, and rolling estimation and fore-

casting. The Copula-GARCH model is implemented with the multivariate Normal and Student t 

distributions, with dynamic and static estimation of the correlation. 
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3.3.2 Package: fGarch 

This package consists of econometric functions for modelling GARCH processes. Generalized 

Autoregressive Conditional Heteroskedastic (GARCH), models have become important in the 

analysis of time series data. For this purpose, the family of GARCH functions offers functions for 

simulating, estimating and forecasting various univariate GARCH-type time series models in the 

conditional variance and an Autoregressive Moving-average (ARMA) specification in the condi-

tional mean. The function garchFit is a numerical implementation of the maximum log-likelihood 

approach under different assumptions like a normal or student-t distribution. Several diagnostic 

analysis tools check the parameter estimates.  

3.3.3 Package: copula 

The copula package provides classes of commonly used elliptical, archimedean, extreme value 

and other copula families. It also includes methods for density, distribution, random number 

generation, and plots. Fitting copula models and goodness-of-fit tests. Independence and serial 

(univariate and multivariate) independence tests, and other copula related tests. 

3.3.4 Package: tseries 

This package conducts time series analysis and computational finance. The Augmented Dick-

ey–Fuller tests in this package are constructed by making use of the general regression equa-

tion that incorporates a constant and a linear trend and the t-statistic for a first order autoregres-

sive coefficient that equals one is computed. The number of lags used in the regression is k. If 

the computed statistic is outside the table of critical values, then a warning message is generat-

ed. Missing values are not allowed. 

3.3.5 Package: moments 

This package contains the function to perform the Jarque-Bera test on a given data sample to 

determine if the data are samples drawn from a normal population. The Jarque-Bare test works 

as follows, under the hypothesis of normality, data should be symmetrical (i.e. skewness should 

be equal to zero) and have skewness close to three. Then the Jarque-Bera statistic is chi-

square distributed with two degrees of freedom. Pearson’s measure of kurtosis is also available 

in this package as well as the function that computes the skewness of a given dataset. 

3.3.6 Package: urca 

This package conducts unit root and co-integration tests for time series data. It includes the Jo-

hansen test procedure for a given data set. The "trace" or "eigen" statistics are reported and the 

matrix of eigenvectors as well as the loading matrix. 
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3.4 SUMMARY STATISTICS, UNIT ROOT AND CO-INTEGRATION TESTS 

Summary statistics like the Lagrange multiplier is calculated to detect any autocorrelation pre-

sent in the data in order to select the appropriate ARMA model. The Ljung-Box Pierce test is 

implemented to check for ARCH effects and the Jarque-Bera test checks for the normality of the 

data. The Dicky-Fuller test indicates if there is a unit root present and therefore indicates wheth-

er the series is stationary or non-stationary. The Johansen test, tests for co-integration between 

the datasets. In this research assignment, the Johansen test is conducted between the Top 40 

Index and its corresponding futures and between the MSCI-Rand Index and the USD/ZAR fu-

tures. 

3.5 THE THREE MODELS AND THE INFORMATION CRITERIONS 

The Constant Conditional Correlation-, Dynamic Conditional Correlation- and Copula Based-

GARCH models are constructed by mainly using the rmgarch package. It also gets incorporated 

into the relevant model whether the conditional variances are constant or dynamic. In the case 

of the Copula-Based GARCH model the Gaussian copula will be used. However, two other cop-

ula functions are described in detail in the literature review that could be considered as opposed 

to using the Gaussian copula function. 

Parameter estimation for each of the models are obtained through the process of maximum-

likelihood. The various information criterions are also calculated for each model to use in the 

process of model selection. Lastly, for interest the copula functions are displayed in a 3-

dimentional graph to see how using different copulas can make a difference in the results. 

3.6 SUMMARY 

This chapter discussed the methodology to implement the theory discussed in Chapter 2. The 

method to construct each model such as the CCC-GARCH, DCC-GARCH and Copula-Based 

GARCH models was discussed. Followed by the different information criterions used to com-

pare the models with one another. In the next chapter the results will be represented and dis-

cussed. 
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CHAPTER 4 

RESULTS 

4.1 INTRODUCTION 

This chapter represents and describes the results. The results represent the outcomes after the 

implementation of the research methodology captured in Chapter 3. In the following sections, 

the estimated parameters of the CCC-GARCH, DCC-GARCH and copula-based GARCH mod-

els are calculated. The summary statistics concerning each of the models are calculated, as 

well as the goodness-of-fit tests to enable comparisons.  

4.2 SUMMARY STATISTICS AND GRAPHICAL PRESENTATION OF THE LOG-

RETURN DATA 

4.2.1 Summary Statistics 

In this subsection the different summary statistics are computed to understand the data in such 

a way as to enable the estimation and selection of the most appropriate model. 

Table 4.1 reports the results of the different summary statistics.  

Summary Statistics 

  Assets 

  Top 40 MSCI-Rand USD/ZAR 

Statistics Stock Futures Spot Futures 

Mean 0.000442322 0.000441907 0.000395164 0.00033063 

Standard Deviation 0.01047332 0.01084127 0.009979288 0.00740623 

Minimum -0.03835729 -0.04276186 -0.0358143 -0.0263537 

Maximum 0.04678554 0.04234158 0.05818463 0.02766695 

Skewness -0.04562985 -0.1224396 0.1178092 0.1984872 

Kurtosis 4.518223 4.326269 5.749292 3.24209 

Jarque-Bera 120.87* 95.04* 23.364* 12.757* 

Q(24) 28.098 32.705 24.84 22.362 

Q2(24) 376.41* 378.29* 54.856* 63.621* 

ARCH(5) 74.221* 81.365* 5.4051 81.365* 
Note that the,∗, indicates significance at a 1% level. Statistical significance is attained when the p-value is less than the significance 

level α. The p-value is the probability of obtaining at least as extreme results given that the null hypothesis is true whereas alpha is 

the probability of rejecting the null hypothesis given that it is true. 

 

     Table 4. 1: Summary Statistics 

There is some relatively small positive skewness in the Top 40 data and small negative skew-

ness in the MSCI-Rand index and the USD/ZAR futures. The kurtosis for the Top 40 data and 

the MSCI-Rand is far from the value three indicating fatter tails than the normal distribution. 

https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors#Type_I_error
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors#Type_I_error
https://en.wikipedia.org/wiki/Null_hypothesis
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However, the kurtosis of the USD/ZAR futures is close to three. The Jarque-Bera statistics are 

all significant indicating that the data does not originate from a normal distribution. Therefore, 

concluding that the unconditional distributions of the spot and futures returns are asymmetric, 

fat-tailed, and non-Gaussian. The Ljung–Box tests indicate that there are no serial correlation 

present in any of the Top 40, USD/ZAR and MSCI-Rand returns. However, both the Ljung-Box 

test and the Lagrange multiplier statistics for the ARCH effects present strong autocorrelations 

in the squared returns for all assets. Thus, the data contains ARCH effects and has to be con-

sidered in the study, therefore the modelling of GARCH is selected.  

Note that, 𝑄(24) denotes the Ljung–Box test statistic up to the 24th-order serial correlation in the 

returns, 𝑄2(24) denotes the Ljung–Box test statistic for the serial correlations in the squared 

returns and ARCH(5) denotes the Lagrange multiplier test up to the fifth-order ARCH effects.  

Table 4.2 reports the results of the unit roots and co-integration tests.  

Unit Root and Co-integration Tests 

  Assets 

  Top 40 MSCI-Rand USD/ZAR 

Statistics Stock Futures Spot Futures 

ADF (Price) -2.7932 -2.8009 -2.4376 -2.9057 

ADF (Returns) -11.4* -11.165* -8.1512* -7.7854* 

Trace 80.9708 - 7.0161 - 

    λ  0.2308 - 2.3998 - 
Note that the,∗, indicates significance at a 1% level. Statistical significance is attained when the p-value is less than the significance 

level α. The p-value is the probability of obtaining at least as extreme results given that the null hypothesis is true whereas alpha is 

the probability of rejecting the null hypothesis given that it is true. 

Table 4. 2: Unit root and co-integration 

The Augmented Dickey–Fuller tests illustrate that the spot and futures prices have a unit root, 

but taking a first-difference leads to stationarity, this is seen by the significance of the 

ADF(Returns) in the table above. The Johansen trace statistics shows that the spot and futures 

prices for stock markets, the MSCI-Rand index and the USD/ZAR futures are not co-integrated 

and therefore the error-correction term ought to be omitted. Knowing that the data is not co-

integrated means there will not be any spurious problems when fitting the models and estimat-

ing their parameters.  

The ADF tests are applied to test the null hypothesis of a unit root for the spot and futures prices 

and the returns. Trace denotes the Johansen trace test, with the null hypothesis being that there 

is no co-integration present in the data. The 𝜆 parameter denotes the estimated co-integration 

parameter.  

https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors#Type_I_error
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors#Type_I_error
https://en.wikipedia.org/wiki/Null_hypothesis
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4.2.2 Graphical Presentation of the data 

The two graphs below illustrate the various indices and futures with their corresponding returns 

over the sample period. This is just to obtain a visual look at what the data looks like when the 

daily log-returns are plotted against time. 

 

 

Figure 4. 1: Graphical analysis 

The next graphs represents the scatter plots between the Top 40 index and the Top 40 futures 

and their returns. The graphs show that hedging a stock with its own futures directly represents 

a straight line, because spot and futures returns in the direct hedge are tied closely together by 

the no-arbitrage condition. Thus, concluding that the correlation between the Top 40 index and 

its futures equals one. Moreover, the correlation between the returns on the Top 40 index and 

its futures equals a value close to one. A positive correlation means that y tends to increase as 

x increases. 
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Figure 4. 2: Scatter plot of Top 40 

Left: Scatter plot of the Top 40 Index and its futures 

Right: Scatter plot of the returns on the Top 40 Index and its futures 

Next follows the scatter plots between the MSCI-Rand index and the USD/ZAR futures. These 

scatter plots show however, that in the case of the cross hedge the spot and futures returns are 

less linearly correlated with one another. Therefore allowing asymmetric dependence, and im-

plying dynamic hedging to be important consideration.    

 

Figure 4. 3: Scatter plot of MSCI-Rand 

Left: Scatter plot of the MSCI-Rand Index and the USD/ZAR futures 

Right: Scatter plot of the returns on the MSCI-Rand Index and the USD/ZAR futures 

4.3 ESTIMATED RESULTS FOR THE CCC-GARCH MODEL 

Table 4.3 reports the results of the estimated parameters and the corresponding standard errors 

of the Top 40 index and its futures through the method of maximum likelihood for the Constant 

Conditional Correlation GARCH model.  

Constant Conditional Correlation GARCH Model Estimations 

Parameters 
Estimate 

Std. Er-
ror 

t-value Pr( > | t |) 

[Top 40].mu 0.000673 0.000264 2.550707 0.01075 

[Top 40].ar1 -0.023099 0.028746 -0.803578 0.42164 

[Top 40].omega 0.000002 0.000003 0.617635 0.53682 
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[Top 40].alpha1 0.074025 0.041479 1.784636 0.07432 

[Top 40].beta1 0.908716 0.047037 19.319313 0 

[Top 40 - Futures].mu 0.000678 0.000615 1.10284 0.2701 

[Top 40 - Futures].ar1 -0.039339 0.02883 -1.364518 0.17241 

[Top 40 - Futures].omega 0.000002 0.000024 0.071813 0.94275 

[Top 40 - Futures].alpha1 0.065276 0.259414 0.251629 0.80133 

[Top 40 - Futures].beta1 0.921507 0.29599 3.113306 0.00185 

[Joint].C1 0.99 0.024501 40.406262 0 

Log-Likelihood 8838.916 

Information Criteria 

    Akaike -14.08 

   Bayes -14.035 

   Shibata -14.08 

   Hannan-Quinn -14.063 

    

Table 4. 3: CCC-GARCH for Top 40 data 

Important aspects to consider of the above table is the estimates of the standard errors. The 

smaller the standard errors of the model the better are the parameter estimations of the model. 

The standard error statistic measures the accuracy, dispersion and precision of the sample as 

an estimate of the population parameter. It is an important indicator of how reliable an estimate 

of the population parameter the sample statistic is.  

 For model selection, consult the various information criterions namely the Akaike, Bayes, Shi-

bata and Hannan-Quinn. The largest negative value represents the more appropriate model to 

select. The log-likelihood values can be compared for each scenario for the different models. 

The larger the log-likelihood value of the model the more appropriate is that model. For the rest 

of the models and their parameter estimations please consult Appendix: A. 

For example, investigating Table 4.3 and Table A.1 the following conclusions are made. The 

standard errors of each of the estimated parameters is smaller for the direct hedge using the 

CCC-GARCH model than that of the cross-hedge. This is also supported by the various infor-

mation criterions, which are all greater for the cross-hedge model as opposed to the direct 

hedge model. Therefore the CCC-GARCH model is ultimately a more appropriate model for the 

direct-hedge.  

Comparing overall the CCC-GARCH, DCC-GARCH and Copula-Based GARCH models the fol-

lowing conclusions are made. The standard errors of each of the estimated parameters is  the 

smallest for the Copula-Based GARCH model with respect to the cross-hedge. However for the 

direct hedge the standard errors of the DCC-GARCH model is the smallest. Next, consider the 
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information criterions of the models, the Copula-Based GARCH model is the most appropriate 

model with respect to the cross-hedge and the direct hedge since it has the smallest information 

criteria values. 

In terms of model fitting, the log-likelihood functions in most of the copula-based GARCH mod-

els are greater than the log-likelihoods of the CCC-GARCH and DCC-GARCH models. In other 

words, allowing the dependence measure to be time-varying could be more crucial than permit-

ting the dependence structure to be asymmetric, because spot and futures returns in the direct 

hedge are tied closely by their no-arbitrage condition. 

However, the copula model has the highest log-likelihood for the cross hedge, in which spot and 

futures returns are less linearly correlated and thus allowing asymmetric dependence in dynam-

ic hedging to be important. 

4.4 COPULA GRAPHICS 

The following figure illustrates the 3-dimensional view of a copula functions for the direct hedge 

between the Top 40 Index and its futures as well as their returns. 

 

Figure 4. 4: Copula Functions 

Left: Copula function for the Top 40 Index and its futures 

Right: Copula function for the Top 40 Index returns and its futures returns 

These graphs show that the Top 40 index is perfectly positively associated with the Top 40 fu-

tures. For further interest on 3-dimentional copula functions and the Gaussian copula, feel free 

to consult Appendix: C. 

4.5 CONCLUSION 

Taking account of the above results the Copula-Based GARCH model, which permits nonlinear 

and asymmetric dependence between the two assets in the cross-hedge portfolio, results in 
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greater risk reduction. Therefore the model performs best if the futures are less correlated with 

the underlying asset. The outcomes for the Copula-Based GARCH model are better than the 

outcomes of the remaining models, but only by a slight amount thus making the choice of model 

depend on the specific problem at hand. The advantages the Copula-Based GARCH model has 

makes it a model to consider when hedging dynamically. Reflecting from the results above the 

DCC-GARCH model is more appropriate than the CCC-GARCH model. Concluding therefore 

that the more dynamic the model the better. But the outcomes of the three different hedging 

models are almost similar. Therefore making the choice of model depends on the specific prob-

lem and other aspects such as cost and time effectiveness of each model has to be taken into 

account. 
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CHAPTER 5 

CONCLUSION AND OPEN QUESTIONS 

There exists several different models and theories for implementing a dynamic hedging strate-

gy. The Copula-Based GARCH model was implemented to verify whether tolerating a nonlinear 

and asymmetric dependence between two assets can be a more effective model than the CCC-

GARCH and DCC-GARCH models. 

Chapter 2 represented a literature review of the three models implemented, as well as some 

elementary discussions on some theory needed to understand the models. The three models 

had to be compared to one another. Therefore choosing the most appropriate model some 

goodness of fit tests and various information criterions were explained. Some attention was also 

given to different summary statistics. Chapter 3 represented the research methodology to im-

plement the theory. 

The results of the estimated parameters and standard errors of each model are represented in 

Chapter 4. The Copula-Based GARCH model performed the best for the cross-hedge portfolio 

and the DCC-GARCH model performed the best for the direct hedge portfolio. Although the re-

sults only differed slightly. Note that the statistical programming code used in this study was 

used and implemented independently by the author and can be viewed as ineffective program-

ming. The code was transcribed in the statistical programming package called R and is denoted 

in Appendix D. 

The Copula-Based GARCH model turned out to be the model most appropriate in the situation 

where futures are less correlated with their underlying assets. Thus leaving room for some open 

questions that can be asked to further future research. Is an even more dynamic approach bet-

ter even if the results in this research assignment only differ slightly to those of a less dynamic 

approach? Is it better to implement the simplest model as opposed to the more complex models 

when the outcomes are very close to one another?  

Concluding that the Copula-Based model does have an advantage, the fact to consider is this 

small advantage worth the complexity. The fact that the results differ by such a small amount 

between the various model makes model selection difficult. The best model suitable will depend 

on the specific situation at hand. It might be more cost effective and productive to implement the 

simpler models since the results are practically the same. Furthermore, extending the hedging 

procedure by making use of options can be a factor to consider in future research. 
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APPENDIX A: TABLES 

Table A.1 reports the results of the estimated parameters and the corresponding standard er-

rors of the MSCI-Rand index and the USD/ZAR futures through the method of maximum likeli-

hood for the Constant Conditional Correlation GARCH model. 

Constant Conditional Correlation GARCH Model Estimations 

Parameters Estimate Std. Error t-value Pr( > | t |) 

[MSCI-RAND].mu 0.000512 0.000402 1.27362 0.202798 

[MSCI-RAND].ar1 -0.055417 0.046761 -1.1851 0.235979 

[MSCI-RAND].omega 0.000002 0.000004 0.43281 0.665152 

[MSCI-RAND].alpha1 0.056765 0.049619 1.144 0.252624 

[MSCI-RAND].beta1 0.928731 0.054034 17.18803 0 

[USD/ZAR].mu 0.000304 0.000298 1.01988 0.307787 

[USD/ZAR].ar1 -0.030701 0.045513 -0.67454 0.499969 

[USD/ZAR].omega 0.000003 0.000002 1.68574 0.091845 

[USD/ZAR].alpha1 0.063465 0.008365 7.58675 0 

[USD/ZAR].beta1 0.890246 0.012949 68.7504 0 

[Joint].C1 -0.101903 0.043386 -2.34876 0.018836 

Log-Likelihood 3352.731 

Information Criteria 

    Akaike -13.421 

   Bayes -13.328 

   Shibata -13.422 

   Hannan-Quinn -13.384 

    

Table A. 1: CCC-GARCH Model Estimations of the MSCI-Rand index and USD/ZAR futures 

Table A.2 reports the results of the estimated parameters and the corresponding standard er-

rors of the Top 40 index and its futures through the method of maximum likelihood for the Dy-

namic Conditional Correlation GARCH model.  

Dynamic Conditional Correlation GARCH Model Estimations 

Parameters 
Estimate 

Std. Er-
ror 

t-value Pr( > | t |) 

[Top 40].mu 0.000673 0.000264 2.552285 0.010702 

[Top 40].ar1 -0.023099 0.028869 -0.800136 0.423632 

[Top 40].omega 0.000002 0.000003 0.625694 0.531516 

[Top 40].alpha1 0.074025 0.041264 1.793924 0.072825 

[Top 40].beta1 0.908716 0.046982 19.341997 0 

[Top 40 - Futures].mu 0.000678 0.000612 1.107522 0.268068 
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Table A. 2: DCC-GARCH Model Estimations for the Top 40 data 

Table A.3 reports the results of the estimated parameters and the corresponding standard er-

rors of the MSCI-Rand index and the USD/ZAR futures through the method of maximum likeli-

hood for the Dynamic Conditional Correlation GARCH model. 

Dynamic Conditional Correlation GARCH Model Estimations 

Parameters Estimate Std. Error t-value Pr( > | t |) 

[MSCI-RAND].mu 0.000512 0.000401 1.27569 0.202066 

[MSCI-RAND].ar1 -0.055417 0.046668 -1.18747 0.235041 

[MSCI-RAND].omega 0.000002 0.000004 0.43295 0.665053 

[MSCI-RAND].alpha1 0.056765 0.049597 1.14451 0.252412 

[MSCI-RAND].beta1 0.928731 0.054036 17.18713 0 

[USD/ZAR].mu 0.000304 0.000298 1.01905 0.308181 

[USD/ZAR].ar1 -0.030701 0.044929 -0.68332 0.494405 

[USD/ZAR].omega 0.000003 0.000002 1.67919 0.093115 

[USD/ZAR].alpha1 0.063465 0.00838 7.5737 0 

[USD/ZAR].beta1 0.890246 0.013 68.47995 0 

[Joint].dcc(a1) 0.011194 0.018015 0.62138 0.534352 

[Joint].dcc(b1) 0.94256 0.089328 10.5517 0 

Log-Likelihood 3353.09 

Information Criteria 

    Akaike -13.414 

   Bayes -13.304 

   Shibata -13.415 

   Hannan-Quinn -13.371 

    

Table A. 4: DCC-GARCH Model Estimations for the MSCI-Rand index and USD/ZAR futures 

[Top 40 - Futures].ar1 -0.039339 0.0288 -1.365917 0.171965 

[Top 40 - Futures].omega 0.000002 0.000023 0.072299 0.942364 

[Top 40 - Futures].alpha1 0.065276 0.25773 0.253273 0.800058 

[Top 40 - Futures].beta1 0.921507 0.294337 3.130789 0.001743 

[Joint].dcc(a1) 0.132187 0.029246 4.519878 0.000006 

[Joint].dcc(b1) 0 0.114457 0.000001 0.999999 

Log-Likelihood 9414.468 

Information Criteria 

    Akaike -14.994 

   Bayes -14.941 

   Shibata -14.995 

   Hannan-Quinn -14.974 
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Table A.4 reports the results of the estimated parameters and the corresponding standard er-

rors of the Top 40 index and its futures through the method of maximum likelihood for the Copu-

la-Based GARCH model. 

Copula-Based GARCH Model Estimations 

Parameters Estimate Std. Error t-value Pr( > | t |) 

[Top 40].mu 0.000693 0.000193 3.588822 0.000332 

[Top 40].ar1 0.898576 0.034748 25.860086 0 

[Top 40].omega 0.000002 0.000003 0.631603 0.527647 

[Top 40].alpha1 0.07254 0.040621 1.785774 0.074136 

[Top 40].beta1 0.910048 0.046285 19.661669 0 

[Top 40 - Futures].mu 0.000694 0.000875 0.792859 0.42786 

[Top 40 - Futures].ar1 0.895171 0.072813 12.294142 0 

[Top 40 - Futures].omega 0.000002 0.000039 0.042361 0.966211 

[Top 40 - Futures].alpha1 0.063581 0.427637 0.148681 0.881805 

[Top 40 - Futures].beta1 0.923335 0.488083 1.891757 0.058523 

[Joint].dcc(a1) 0.081923 0.070364 1.164276 0.244312 

[Joint].dcc(b1) 0.021204 0.268833 0.078872 0.937134 

[Joint].dcc(b1) 0.086431 0.067192 1.286341 0.198324 

Log-Likelihood 9423.014 

Information Criteria 

    Akaike -15.005 

   Bayes -14.943 

   Shibata -15.005 

   Hannan-Quinn -14.982 

    

Table A. 5: Copula-Based GARCH Model Estimations for the Top 40 index and its futures 

Table A.5 reports the results of the estimated parameters and the corresponding standard er-

rors of the MSCI-Rand index and the USD/ZAR futures through the method of maximum likeli-

hood for the Copula-Based GARCH model. 

Copula-Based GARCH Model Estimations 

Parameters Estimate Std. Error t-value Pr( > | t |) 

[MSCI-RAND].mu 0.000521 0.000402 1.27485 0.202364 

[MSCI-RAND].ar1 -0.055417 0.046678 -1.18722 0.235139 

[MSCI-RAND].omega 0.000002 0.000004 0.43291 0.66508 

[MSCI-RAND].alpha1 0.056765 0.049614 1.14412 0.252574 

[MSCI-RAND].beta1 0.928731 0.054048 17.1833 0 

[USD/ZAR].mu 0.000304 0.000299 1.0184 0.308487 

[USD/ZAR].ar1 -0.030701 0.045023 -0.68189 0.495311 

[USD/ZAR].omega 0.000003 0.000002 1.68016 0.092926 

[USD/ZAR].alpha1 0.063465 0.008376 7.57738 0 

[USD/ZAR].beta1 0.890246 0.012991 68.52939 0 
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[Joint].dcc(a1) 0.0107 0.017208 0.62182 0.534064 

[Joint].dcc(b1) 0.933018 0.148441 6.28544 0 

[Joint].dcc(g1) 0.004759 0.02532 0.18797 0.850897 

Log-Likelihood 3353.127 

Information Criteria 

    Akaike -13.414 

   Bayes -13.304 

   Shibata -13.415 

   Hannan-Quinn -13.371 

    

Table A. 6: Copula-Based GARCH Model Estimations for the MSCI-Rand index and 

USD/ZAR futures 

 



49 

 

APPENDIX B: COPULA GRAPHICS 

 

Figure B. 1: Gaussian copula functions 

Left: Gaussian Copula function for the Top 40 index and its futures  

Right: Gaussian Copula function for the Top 40 Index returns and its futures returns 

The figures that follow illustrates the copula functions and Gaussian-copula for the cross-hedge 

between the MSCI-Rand Index and the USD/ZAR futures. 

 

Figure B. 2: Cross-Hedge copula functions 

 Left: Copula function for the MSCI-Rand index and the USD/ZAR futures  

Right: Copula function for the MSCI-Rand Index returns and the USD/ZAR futures returns 
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Figure B. 3: Gaussian copula for Cross-Hedge 

Left: Gaussian Copula function for the MSCI-Rand index and the USD/ZAR futures  

Right: Gaussian Copula function for the MSCI-Rand Index returns and the USD/ZAR futures re-

turns 
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APPENDIX C: REFERENCE TO SUMMARY STATISTICS 

  

C.1 Mean 

When used without conditions, the mean refers to the arithmetic average of a data set. To cal-

culate the mean, add all the values in the data set and divide by the number of observations.    

We differentiate between a population mean and the sample mean. The population mean μ is 

given by the following:       𝜇 =  
1

𝑁
∑ 𝑥𝑖 

where, ∑ 𝑥𝑖 denotes the sum of all the values in the population and 𝑁 denotes the population 

size. 

The sample mean �̅� is given by:   �̅� =  
1

𝑛
∑ 𝑥𝑖 

The formulas for the population mean and the sample mean are practically identical. The only 

difference is whether the data that is used represents the entire population or a sample of the 

population. In practice, working with a sample and not the entire population is more constructive 

(Sterman, 1984, p.52-54). 

C.2 Variance and Standard Deviation 

The standard deviation is the greatest common measure of spread. A deviation represents the 

difference between a value and the mean.  

The population variance follows as:  𝜎2 =  
∑  (𝑥𝑖−�̅�)2

𝑁
 

  

The sample variance follows as:  𝑠2 =  
∑  (𝑥𝑖−�̅�)2

𝑛−1
 

In the sample variance the denominator is 𝑛 − 1 instead of 𝑛. The reason for this is because 

when 𝑛 is large, 𝑛 − 1 ≈ 𝑛, so the numerical outcomes from the two formulas will be similar. 

However, when 𝑛 is small, the sample variance will provide a bigger outcome than the popula-

tion variance. And this is necessary to derive an unbiased estimate for the population variance. 

The sample standard deviation is the square root of the variance: 

𝑠 =  √
∑  (𝑥𝑖 − �̅�)2 

𝑛 − 1
 

(Sterman, 1984, p.52-54). 
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C.3 Kurtosis 

Kurtosis provides a measure of the thickness in the tails of a probability density function. The 

normal distribution has a kurtosis value equal to three (Domański, 2010, p.77). In symmetric dis-

tributions, positive kurtosis suggests heavy tails and peaked-ness, whereas negative kurtosis 

indicates light tails and flatness (DeCarlo, 1997, p.292). Kurtosis, defined as the standardised 

fourth population moment about the mean is given by:  

𝛽2 =  
𝐸(𝑋 − 𝜇)4

(𝐸(𝑋 − 𝜇)2)2
=  

𝜇4

𝜎4
 

where, 𝐸 denotes the expectation operator, 𝜇 is the mean, 𝜇4 represents the fourth moment 

about the mean and 𝜎 is the standard deviation. The normal distribution has a kurtosis of three, 

and 𝛽2 − 3 is regularly used so that the reference normal distribution has a zero kurtosis 

(DeCarlo, 1997, p.292). A sample equivalent to 𝛽2 is achieved by substituting the population 

moments with the sample moments, which then gives: 

𝑏2 =  
∑(𝑋𝑖 − �̅�)4/𝑛

(∑(𝑋𝑖 − �̅�)2/𝑛)2
 

where, 𝑏2 denotes the sample kurtosis, �̅� is the sample mean and 𝑛 is the number of observa-

tions. 

Tailed-ness and peaked-ness are both components of kurtosis since kurtosis represents the  

movement of a mass that does not affect the variance. Consider the case of positive kurtosis, 

where a higher peak frequently accompanies heavier tails. Note that if the mass is moved from 

the shoulders of a distribution to its tails, then the variance will be bigger. To leave the variance 

unchanged, mass has to be moved from the shoulders to the centre, which gives a rewarding 

decrease in the variance and a peak. For negative kurtosis, the variance will be unchanged if 

mass is moved from the tails and centre of the distribution to its shoulders, resulting in light tails 

and flatness. It should be acknowledged that even though tailed-ness and peaked-ness are of-

ten both components of kurtosis, kurtosis can also imitate the effect of mainly one of these 

components, such as heavy tails (DeCarlo, 1997, p.292). 

C.4 Skewness 

Skewness provides a measure of how symmetric the observations are about the mean. The 

normal distribution has skewness value equal to zero. A distribution that is skewed to the right is 

known to have positive skewness and a distribution that is skewed to the left has negative 

skewness (Domański, 2010, p.77). 

Skewness describes asymmetry from the normal distribution. There is positive and negative 

skewness, depending on whether the data points are skewed to the left or to the right of aver-

age of the dataset. Most datasets, including stock prices and asset returns, have either positive 

http://www.investopedia.com/terms/n/normaldistribution.asp
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or negative skewness rather than following the balanced normal distribution, which has a skew-

ness of zero. By knowing which way data is skewed, better estimations can be obtained of 

whether a data point will be more or less than the mean. The skewness of a random variable 𝑋 

is often measured by the standardised third central moment given by: 

𝛽2 =  
𝜇3

𝜎3
 

The value of this measure can become arbitrarily large, making it difficult to interpret 

(Groeneveld and Meeden, 1984, p.391). 
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APPENDIX D: R CODE 

library(zoo) 

library(rmgarch)  

library(timeSeries)  

library(fAssets) 

library(xlsx) 

library(FinTS) 

library(fGarch) 

library(MTS) 

library(DistributionUtils) 

library(copula) 

library(tseries) 

library(moments) 

library(urca) 

 

Return_Data <- read.table(file = "F:\\Research Assign-

ment\\DATA\\Return_Data.txt",header=TRUE) 

Cross_Hedge <- read.table(file = "F:\\Research Assign-

ment\\DATA\\Cross_Hedge_Data.txt",header=TRUE) 

 

model.1 <- as.timeSeries(Return_Data) 

plot(model.1,main="Graphical Analysis of the Top 40 data") 

model.2 <- as.timeSeries(Cross_Hedge) 

plot(model.2,main="Graphical Analysis of the Cross-Hedge data") 

 

par(mfrow = c(1,2)) 

assetsHistPlot(model.1[,1]) 

assetsHistPlot(model.1[,2]) 

assetsHistPlot(model.1[,3]) 

assetsHistPlot(model.1[,4]) 

assetsHistPlot(model.2[,1]) 

assetsHistPlot(model.2[,2]) 

assetsHistPlot(model.2[,3]) 

assetsHistPlot(model.2[,4]) 

 

assetsCorTestPlot(model.1[,1:2]) 

assetsCorTestPlot(model.1[,3:4]) 
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assetsCorTestPlot(model.2[,1:2]) 

assetsCorTestPlot(model.2[,3:4]) 

 

assetsCorgramPlot(model.1[,1:2]) 

assetsCorgramPlot(model.1[,3:4]) 

assetsCorgramPlot(model.2[,1:2]) 

assetsCorgramPlot(model.2[,3:4]) 

 

assetsCorImagePlot(model.1[,1:2]) 

assetsCorImagePlot(model.1[,3:4]) 

assetsCorImagePlot(model.2[,1:2]) 

assetsCorImagePlot(model.2[,3:4]) 

###################################################################### 

# plot returns with squared and absolute returns 

 

par(mfrow = c(1,1)) 

dataToPlot = cbind(Return_Data[,4], (Return_Data[,4])^2, 

abs(Return_Data[,4])) 

colnames(dataToPlot) = c("Returns", "Returns^2", "abs(Returns)") 

plot.zoo(dataToPlot, main="Top 40 Daily Returns", col="blue") 

 

dataToPlot = cbind(Return_Data[,5], (Return_Data[,5])^2, 

abs(Return_Data[,5])) 

colnames(dataToPlot) = c("Returns", "Returns^2", "abs(Returns)") 

plot.zoo(dataToPlot, main="Top40 Futures Daily Returns", col="purple") 

 

dataToPlot = cbind(Cross_Hedge[,4], (Cross_Hedge[,4])^2, 

abs(Cross_Hedge[,4])) 

colnames(dataToPlot) = c("Returns", "Returns^2", "abs(Returns)") 

plot.zoo(dataToPlot, main="MSCI-RAND Index Daily Returns", 

col="brown") 

 

dataToPlot = cbind(Cross_Hedge[,5], (Cross_Hedge[,5])^2, 

abs(Cross_Hedge[,5])) 

colnames(dataToPlot) = c("Returns", "Returns^2", "abs(Returns)") 

plot.zoo(dataToPlot, main="USD-ZAR Futures Daily Returns", col="red") 

###################################################################### 

# Summary Statistics: 

 



56 

 

 Mean1 <- mean(Return_Data[,4]) 

 Mean2 <- mean(Return_Data[,5]) 

 Mean3 <- mean(Cross_Hedge[,4]) 

 Mean4 <- mean(Cross_Hedge[,5]) 

 

 SD1 <- sd(Return_Data[,4]) 

 SD2 <- sd(Return_Data[,5]) 

 SD3 <- sd(Cross_Hedge[,4]) 

 SD4 <- sd(Cross_Hedge[,5]) 

 

 Min1 <- min(Return_Data[,4]) 

 Min2 <- min(Return_Data[,5]) 

 Min3 <- min(Cross_Hedge[,4]) 

 Min4 <- min(Cross_Hedge[,5]) 

 

 Max1 <- max(Return_Data[,4]) 

 Max2 <- max(Return_Data[,5]) 

 Max3 <- max(Cross_Hedge[,4]) 

 Max4 <- max(Cross_Hedge[,5]) 

 

 Skew1 <- skewness(Return_Data[,4]) 

 Skew2 <- skewness(Return_Data[,5]) 

 Skew3 <- skewness(Cross_Hedge[,4]) 

 Skew4 <- skewness(Cross_Hedge[,5]) 

 

 Kurt1 <- kurtosis(Return_Data[,4]) 

 Kurt2 <- kurtosis(Return_Data[,5]) 

 Kurt3 <- kurtosis(Cross_Hedge[,4]) 

 Kurt4 <- kurtosis(Cross_Hedge[,5]) 

 

 JB1 <- jarque.bera.test(Return_Data[,4]) 

 JB2 <- jarque.bera.test(Return_Data[,5]) 

 JB3 <- jarque.bera.test(Cross_Hedge[,2]) 

 JB4 <- jarque.bera.test(Cross_Hedge[,3]) 

 

#Ljung-Box Tests: 

#Top40 

Box.test(Return_Data[,4], type="Ljung-Box", lag = 24) 
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Box.test(((Return_Data[,4])^2), type="Ljung-Box", lag = 24) 

#Top40_Futures 

Box.test(Return_Data[,5], type="Ljung-Box", lag = 24) 

Box.test(((Return_Data[,5])^2), type="Ljung-Box", lag = 24) 

#MSCI-Rand 

Box.test(Cross_Hedge[,4], type="Ljung-Box", lag = 24) 

Box.test(((Cross_Hedge[,4])^2), type="Ljung-Box", lag = 24) 

#USD/RAND-Futures 

Box.test(Cross_Hedge[,5], type="Ljung-Box", lag = 24) 

Box.test(((Cross_Hedge[,5])^2), type="Ljung-Box", lag = 24) 

# use ArchTest() function from FinTS package for Engle's LM test 

# Top40 

ArchTest(Return_Data[,4],lags=5) 

#Top40-Futures 

ArchTest(Return_Data[,5],lags=5) 

#MSCI-RAND 

ArchTest(Cross_Hedge[,4],lags=5) 

#USD/RAND-Futures 

ArchTest(Return_Data[,5],lags=5) 

############################################################### 

#Top40(price) 

DF1 <- adf.test(Return_Data[,2]) 

ur.df(Return_Data[,2]) 

#Top40(returns) 

DF2 <- adf.test(Return_Data[,4]) 

ur.df(Return_Data[,4]) 

#Top40_Futures(price) 

DF3 <- adf.test(Return_Data[,3]) 

ur.df(Return_Data[,3]) 

#Top40_Futures(returns) 

DF4 <- adf.test(Return_Data[,5]) 

ur.df(Return_Data[,5]) 

#MSCI(price) 

DF5 <- adf.test(Cross_Hedge[,2]) 

ur.df(Cross_Hedge[,2]) 

#MSCI(returns) 

DF6 <- adf.test(Cross_Hedge[,4]) 

ur.df(Cross_Hedge[,4]) 
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#USD/ZAR(price) 

DF7 <- adf.test(Cross_Hedge[,3]) 

ur.df(Cross_Hedge[,3]) 

#USD/Rnd(returns) 

DF8 <- adf.test(Cross_Hedge[,5]) 

ur.df(Cross_Hedge[,5]) 

###################################################################### 

#Johansen Tests: 

 

J1 <- ca.jo(Return_Data[,2:3],type = c("eigen", "trace")) 

J2 <- ca.jo(Cross_Hedge[,2:3],type = c("eigen", "trace")) 

###################################################################### 

#CCC Moddelling: 

uspec.n = multispec(replicate(2, ugarchspec(mean.model = 

list(armaOrder = c(1,0))))) 

spec.cccn = cgarchspec(uspec.n, dccOrder = c(1, 1), distribu-

tion.model= list( copula = "mvnorm", method = "ML", time.varying = 

FALSE)) 

fit.1 = cgarchfit(spec.cccn, data = Return_Data[,4:5], solver = 

'solnp',fit.control = list(eval.se = TRUE)) 

resi1=residuals(fit.1) 

covariance <- cov(resi1) 

 

uspec.n = multispec(replicate(2, ugarchspec(mean.model = 

list(armaOrder = c(1,0))))) 

spec.cccn = cgarchspec(uspec.n, dccOrder = c(1, 1), distribu-

tion.model= list( copula = "mvnorm", method = "ML", time.varying = 

FALSE)) 

fit.2 = cgarchfit(spec.cccn, data = Cross_Hedge[,4:5], solver = 

'solnp',fit.control = list(eval.se = TRUE)) 

resi2=residuals(fit.2) 

covariance_2 <- cov(resi2) 

 

#DCC Moddelling: 

#DCC with multivariate normal distribution: 

uspec.n = multispec(replicate(2, ugarchspec(mean.model = 

list(armaOrder = c(1,0))))) 

spec.dccn = dccspec(uspec.n, dccOrder = c(1, 1),model="DCC", distribu-

tion ='mvnorm') 

fit.1 = dccfit(spec.dccn, data = Return_Data[,4:5], solver = 

'solnp',fit.control = list(eval.se = TRUE)) 
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resi1=residuals(fit.1) 

plot(fit.1) 

covariance <- cov(resi1) 

optimal_hedge_ratio_1 <- (0.0001073814/0.0001174076) 

 

uspec.n = multispec(replicate(2, ugarchspec(mean.model = 

list(armaOrder = c(1,0))))) 

spec.dccn = dccspec(uspec.n, dccOrder = c(1, 1),model="DCC", distribu-

tion ='mvnorm') 

fit.2 = dccfit(spec.dccn, data = Cross_Hedge[,4:5], solver = 

'solnp',fit.control = list(eval.se = TRUE)) 

resi2=residuals(fit.2) 

plot(fit.2) 

covariance_2 <- cov(resi2) 

optimal_hedge_ratio_2 <- (0.000002677817/0.0002083352) 

 

# Copula Moddelling 

uspec.n = multispec(replicate(2, ugarchspec(mean.model = 

list(armaOrder = c(1,0))))) 

spec.cbgn = cgarchspec(uspec.n, dccOrder = c(1, 1),asymmetric = TRUE, 

distribution.model = list(copula ="mvnorm",  

method ="ML", time.varying = TRUE)) 

fit.1 = cgarchfit(spec.cbgn, data = Return_Data[,4:5], solver = 

'solnp',fit.control = list(eval.se = TRUE)) 

resi1=residuals(fit.1) 

uspec.n = multispec(replicate(2, ugarchspec(mean.model = 

list(armaOrder = c(1,0))))) 

spec.cbgn = cgarchspec(uspec.n, dccOrder = c(1, 1),asymmetric = TRUE, 

distribution.model = list(copula ="mvnorm",  

method ="ML", time.varying = TRUE)) 

fit.2 = cgarchfit(spec.cbgn, data = Cross_Hedge[,4:5], solver = 

'solnp',fit.control = list(eval.se = TRUE)) 

resi2=residuals(fit.2) 

 

fit1 = garchFit(formula = ~arma(1,1)+garch(1,1),data=Return_Data[,4], 

cond.dist ="std") 

fit2 = garchFit(formula = ~ arma(1,1)+garch(1,1),data=Return_Data[,5], 

cond.dist ="std") 

resid1 <- residuals(fit1) 

resid2 <- residuals(fit2) 

cov(resid1,resid2) 
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var(resid2) 

optimal_hedge_ratio_1 <- (0.0001064253/0.0001163693) 

 

dat_res <- cbind(resid1,resid2) 

m_res <- apply(dat_res, 2, mean) 

v_res <- apply(dat_res, 2, var) 

dat_res_std =cbind((dat_res[,1]-m_res[1])/sqrt(v_res[1]),(dat_res[,2]-

m_res[2])/sqrt(v_res[2])) 

 

fit3 = garchFit(formula = ~ arma(1,1)+garch(1,1),data=Cross_Hedge[,4], 

cond.dist ="std") 

fit4 = garchFit(formula = ~ arma(1,1)+garch(1,1),data=Cross_Hedge[,5], 

cond.dist ="std") 

resid3 <- residuals(fit3) 

resid4 <- residuals(fit4) 

cov(resid3,resid4) 

var(resid4) 

optimal_hedge_ratio_2 <- (0.00000215055/0.0002103779) 

 

dat_res1 <- cbind(resid3,resid4) 

m_res1 <- apply(dat_res1, 2, mean) 

v_res1 <- apply(dat_res1, 2, var) 

dat_res_std1 =cbind((dat_res1[,1]-

m_res1[1])/sqrt(v_res1[1]),(dat_res1[,2]-m_res1[2])/sqrt(v_res1[2])) 

 

fix(copula_1) 

function ()  

{uv = dat_res_std[,1:2] 

n = nrow(uv) 

uv = cbind(rank(uv[,1]),rank(uv[,2]))/(n+1) 

xy = qnorm(uv) 

s = 0.3 

dc = Vectorize(function(x,y)       

mean(dnorm(rep(qnorm(x),n),xy[,1],s)*dnorm(rep(qnorm(y),n),xy[,2],s))/ 

dnorm(qnorm(x))/dnorm(qnorm(y))) 

vx = seq(1/30,29/30,by=1/30) 

vz = outer(vx,vx,dc) 

zl = c(0,12) 
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persp(vx,vx,vz,theta=20,phi=10,col="purple",shade=TRUE,xlab=names(Retu

rn_Data)[2],ylab=names(Return_Data)[3],zlab="Copula",ticktype="detaile

d",zlim=zl)} 

 

fix(copula_2) 

function ()  

{uv = dat_res_std[,1:2] 

n = nrow(uv) 

uv = cbind(rank(uv[,1]),rank(uv[,2]))/(n+1) 

xy = qnorm(uv) 

s = 0.3 

dc = Vectorize(function(x,y) 

mean(dnorm(rep(qnorm(x),n),xy[,1],s)*dnorm(rep(qnorm(y),n),xy[,2],s))/ 

dnorm(qnorm(x))/dnorm(qnorm(y))) 

vx = seq(1/30,29/30,by=1/30) 

vz = outer(vx,vx,dc) 

zl = c(0,12) 

persp(vx,vx,vz,theta=20,phi=10,col="pink",shade=TRUE,xlab=names(Return

_Data)[4],ylab=names(Return_Data)[5],zlab="Copula",ticktype="detailed"

,zlim=zl)} 

 

fix(copula_3)     

function() 

{uv = dat_res_std[,1:2] 

n = nrow(uv) 

uv = cbind(rank(uv[,1]),rank(uv[,2]))/(n+1)  

norm.cop <- normalCopula(0.5) 

norm.cop <- normalCopula(fitCopula(norm.cop,uv)@estimate) 

dc = function(x,y) dCopula(cbind(x,y), norm.cop) 

vx = seq(1/30,29/30,by=1/30)      

vz = outer(vx,vx,dc) 

zl = c(0,16) 

persp(vx,vx,vz,theta=20,phi=10,col="green",shade=TRUE,xlab=names(Retur

n_Data)[2],ylab=names(Return_Data)[3],zlab="GaussianCopula",ticktype="

detailed",zlim=zl)} 

 

fix(copula_4)    

function() 

{uv = dat_res_std[,1:2] 

n = nrow(uv) 



62 

 

uv = cbind(rank(uv[,1]),rank(uv[,2]))/(n+1)  

norm.cop <- normalCopula(0.5) 

norm.cop <- normalCopula(fitCopula(norm.cop,uv)@estimate) 

dc = function(x,y) dCopula(cbind(x,y), norm.cop) 

vx = seq(1/30,29/30,by=1/30)      

vz = outer(vx,vx,dc) 

zl = c(0,16)  

persp(vx,vx,vz,theta=20,phi=10,col="orange",shade=TRUE,xlab=names(Retu

rn_Data)[4],ylab=names(Return_Data)[5],zlab="GaussianCopula",ticktype=

"detailed",zlim=zl)} 

###################################################################### 

fix(copula_1.1) 

function ()  

{uv = dat_res_std1[,1:2] 

n = nrow(uv) 

uv = cbind(rank(uv[,1]),rank(uv[,2]))/(n+1) 

xy = qnorm(uv) 

s = 0.3 

dc = Vectorize(function(x,y) 

mean(dnorm(rep(qnorm(x),n),xy[,1],s)*dnorm(rep(qnorm(y),n),xy[,2],s))/ 

dnorm(qnorm(x))/dnorm(qnorm(y))) 

vx = seq(1/30,29/30,by=1/30) 

vz = outer(vx,vx,dc) 

zl = c(0,3)  

persp(vx,vx,vz,theta=20,phi=10,col="yellow",shade=TRUE,xlab=names(Cros

s_Hedge)[2],ylab=names(Cross_Hedge)[2],zlab="Copula",ticktype="detaile

d",zlim=zl)} 

 

fix(copula_2.1) 

function ()  

{uv = dat_res_std1[,1:2] 

n = nrow(uv) 

uv = cbind(rank(uv[,1]),rank(uv[,2]))/(n+1) 

xy = qnorm(uv) 

s = 0.3 

dc = Vectorize(function(x,y) 

mean(dnorm(rep(qnorm(x),n),xy[,1],s)*dnorm(rep(qnorm(y),n),xy[,2],s))/ 

dnorm(qnorm(x))/dnorm(qnorm(y))) 

vx = seq(1/30,29/30,by=1/30) 

vz = outer(vx,vx,dc) 
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zl = c(0,3) 

persp(vx,vx,vz,theta=20,phi=10,col="red",shade=TRUE,xlab=names(Cross_H

edge)[4],ylab=names(Cross_Hedge)[5],zlab="Copula",ticktype="detailed",

zlim=zl)} 

 

fix(copula_3.1) 

function() 

{uv = dat_res_std1[,1:2] 

n = nrow(uv) 

uv = cbind(rank(uv[,1]),rank(uv[,2]))/(n+1)  

norm.cop <- normalCopula(0.5) 

norm.cop <- normalCopula(fitCopula(norm.cop,uv)@estimate) 

dc = function(x,y) dCopula(cbind(x,y), norm.cop) 

vx = seq(1/30,29/30,by=1/30)      

vz = outer(vx,vx,dc) 

zl = c(0.7,1.4) 

persp(vx,vx,vz,theta=20,phi=10,col="green",shade=TRUE,xlab=names(Cross

_Hedge)[2],ylab=names(Cross_Hedge)[3],zlab="GaussianCopula",ticktype="

detailed",zlim=zl)} 

 

 

 


