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Abstract 

The semi-analytical approach to calculating Credit Value Adjustment (CVA) on an interest rate swap 

(IRS) provides an alternative to the limited simplistic mark-to-market approach and the resource-

intensive Monte Carlo approach. The semi-analytical (or swaption) approach was implemented in 

this paper using two models: Black’s model and the Hull-White one-factor model. Results from using 

the semi-analytical approach were compared to that of the simplistic method.  A relatively thorough 

analysis was also done on the factors affecting results from using the swaption approach, and the 

two models were also compared. It was found that the swaption approach provided far more 

information than the simplistic approach on how exposures are distributed over the two 

counterparties in an IRS and especially over the lifetime of the swap contract. Model parameters, as 

well as the term structure of interest rates, were found to have a significant effect on the CVA in 

each of the models. The Hull-White model, with an additional parameter over Black’s model, 

showed more complex interactions between its parameters and CVA than Black’s model did. 
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Opsomming 

Die semi-analitiese benadering om die kredietwaarde aanpassing (KWA) op ‘n 

rentekoersuitruiltransaksie (RUT) te bereken is ‘n alternatief tot die beperkte, simplistiese “mark-to-

market” benadering en die hulpbron-intensiewe Monte Carlo benadering. Die semi-analitiese (of 

“swaption”) benadering was geïmplimenteer met twee verskillende modelle: Black se model en die 

Hull-White een-faktor model. Resultate van die semi-analitiese benadering was vergelyk met dié van 

die simplistiese metode. ‘n Redelike deeglike analise was ook gedoen op die faktore wat die 

resultate van die semi-analitiese metode beïnvloed, en die twee modelle was ook vergelyk. Dit was 

vasgestel dat die semi-analitiese metode meer inligting as die simplistiese metode gee oor hoe 

krediet blootstellings in ‘n RUT tussen die twee teenpartye , en veral oor die leeftyd van die RUT, 

verdeel is. Dit was ook vasgestel dat model parameters, sowel as die rentekoers termyn struktuur, ‘n 

beduidende effek op die KWA het in elk van die modelle. Die Hull-White model, met ‘n ekstra 

parameter oor Black se model, het meer komplekse interaksies tussen sy parameters en KWA gehad 

as Black se model. 
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List of common symbols used in formulas 

The symbols listed here will have the same meaning throughout this paper. 

�(�, �, ��) – Value of a swap as seen at time 
 for a swap starting at time � and maturing at time �� 

��,
 – Alternative notation for �(
, �, ��) 
�(�, �, ��) – Swap rate as seen at time 
 for a swap starting at time � and maturing at time ��. 

When dates are clear from context, only � will be used as notation. 

�� - Alternative notation specifically for �(
, �, ��) 
�(�, �, ��) – Value at time � of a zero-coupon bond as seen at time 
, maturing at time �� with a   

principal of one unit of currency. Has different exact definitions under different models 

�(�, ��, �∗) - Re-parameterised, non-stochastic version of �(0, �, ��), for a specific value of 

random variable � = �∗ 
�(�, �, �) – Annual forward rate between time � and �, as seen at time 
 
� – Notional value of swap (or principal value of bond) 

� – Length of the periods between payment dates. When written as ��, it denotes then the length of 

period � 
 !" – Recovery rate 


 - Strike rate (used as fixed rate when discussing tail swaps) 

##(�) – Expected exposure at time 
 
�$(�, �, ��) - Value of a tail swap as seen at time 
 for a swap starting at time � and maturing at time 

�� 

����%(&) – Difference between normal swap and tail swap, when entered into at time 
 
'(�, �, ��) – Price of a payer swap (any model) 

'()(�, �, ��) – Price of a payer swaption under Hull-White model 

'*�(�, �, ��) – Price of a payer swaption under Black’s model 

'()	���%(�, �, ��) – Price of an option to enter into a payer tail swap under the Hull-White model 

'*�	���%(�, �, ��) – Price of an option to enter into a payer tail swap under Black’s model 

 (�, �, ��), 	 ()(�, �, ��),   *�(�, �, ��),  ()	���%(�, �, ��),  *�	���%(�, �, ��) - Same as above, 

except for receiver swaptions/swaps 

 ,(�) – Value of numeraire at time 
 
-(�) – Standard normal cumulative distribution function 
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1 Introduction 

The financial crisis of 2007 has prompted firms and economic agents to re-examine their approaches 

to assessing financial risks, with counterparty risk comprising a large part of these risks globally. In 

the over the counter (OTC) derivatives market, counterparty risk has gained immense attention in 

recent years.  

OTC derivatives comprise a large part of the global financial market. In December 2008, the overall 

outstanding notional in the OTC market amounted to $547 trillion, with 70% of that consisting of 

interest rate derivatives. Even though the financial crisis had been a recent occurrence, with the 

global economy still recovering,  the OTC markets’ gross value increased by 60% from June 2008 to 

December 2008, while specifically interest rate derivatives’ gross market value doubled from $9 

trillion to $18 trillion in that same period (Stein and Lee, 2010:2). With the absence of a mediator 

(e.g. a market-maker) in the OTC derivatives market, counterparty risk has always been a real 

danger, even though it has not always been recognised as such.  

Counterparty risk is the risk that the counterparty in a derivative (or any financial) contract will fail to 

meet its obligations, possibly leading to losses for the party that was defaulted on. Where the risk 

cannot be eliminated or significantly reduced, e.g. with a Credit Support Annex (CSA), a fair value 

adjustment is made to both the parties’ derivative books to make provision for the credit risk. This 

adjustment is known as the credit valuation adjustment, or CVA. Pykhtin and Zhu (2007:1) define 

CVA as the price of counterparty credit risk. Accounting standards (IFRS and GAAP) require that 

credit risk be reflected in the fair value measurement of derivatives (Shearman and Sterling LLP, 

2013:2). 

1.1 Problem statement 

Before the global financial crisis, firms limited their counterparty risk by trading only with financially 

secure counterparties. However, during the financial crisis, even these “secure” counterparties were 

shown to pose financial risks, sometimes even the biggest (Gregory, 2012:18). In response to this, 

Basel implemented a requirement that a fair value adjustment (CVA) be made to each derivative 

contract in the OTC market (Shearman and Sterling LLP, 2013:1).  

CVA can be calculated using a variety of methods, with the Monte Carlo simulation approach rapidly 

becoming a standard because of its flexibility in incorporating various risk factors (Gregory, 

2012:157). However, the focus of this paper is solely the semi-analytical method (or swaption 

approach). If the Monte Carlo approach is used, the estimate will generally be very flexible and 

accurate regarding risk factors, but the infrastructure (in terms of technology and human capital) 

and time required for this approach is sometimes impractical for certain firms.  

Firms that lack infrastructure can instead use the semi-analytical approach to estimate expected 

exposure (EE), which will then be used to calculate CVA. This approach sacrifices some flexibility in 

estimating the exposure and can only be applied to a portfolio containing a relatively simple 

combination of risk factors. However, it is usually quick and easy to implement compared to the 

Monte Carlo method (Gregory, 2012:159). This will allow firms with less infrastructure to estimate 

CVA with more accuracy, without sacrificing large amounts of resources to do so, should the semi-

analytical method prove to be significantly more accurate than the simplistic method. It therefore 



15 

 

needs to be determined whether there is indeed any merit for choosing the semi-analytical method 

over the simplistic approach.  

1.2 Research objectives  

In this research assignment, the effectiveness of using the semi-analytical method in the calculation 

of EE of interest rate swaps will be investigated. The CVA will then be calculated on a relatively small 

and simple portfolio of interest rate swaps and results will be compared to the mark-to-market 

method. In addition, the following areas will be explored and discussed: 

• Assessment of interest rate risk after entering into a swap, using the DV01 measure 

 

• The effect of collateral on the exposure profile as well as CVA 

 

• Calculation of exposure and CVA for a simple netted portfolio 

 

• The effects that model parameters have on EE and CVA valuation 

 

• Comparison of different interest rate models in EE and CVA valuation 

 

• Calibration of the swaption models to South African market data, specifically forward 

interest rate curves (using JIBAR rates) 

 

• Investigate/mention any other issues that might come up during research, as well as 

identifying areas that might require further research 

 

1.3 Clarification of key concepts 

A short definition will be given here for common terms used in this paper. 

Credit value adjustment (CVA) 

Defined by the Basel III committee as the difference between the prices of a derivative contract if 

the counterparty is risk-free and if the counterparty poses default risk (Shearman and Sterling LLP, 

2013). Thus, it is the adjustment to the fair value of a derivative contract (in this case, an interest 

rate swap) to account for the risk that a counterparty bears or represents. 

Debit value adjustment (DVA) 

Has the same definition as CVA, except that the party’s own riskiness in the contract is measured, 

thus it measures CVA from the counterparty’s perspective. It can be defined as the CVA that a 

counterparty would be expected to hold against the party concerned (International Valuation 

Standards Council, 2013:6). 

Expected exposure (EE) 

Defined as the average of the distribution of all exposures on a specific date in the future, 

conditional on positive market values (Harper, s.a.). In simpler terms, EE is the expected loss that will 

be incurred at a future point in time if a counterparty defaults. This is based on the assumption that 
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the party that was defaulted on will replace the swap that was lost due to default, at the same 

instant that default occurred, and the loss will be the amount that the party will have to pay to enter 

into the new swap. 

Interest rate swap (IRS) 

A derivative contract that lets two parties exchange fixed and floating rate payments. In other 

words, one party pays a fixed rate and receives a floating rate (usually based on a set reference rate, 

such as JIBAR) to and from a counterparty, and vice versa. A swap where the holding party pays fixed 

and receives floating will be referred to as a payer swap and a swap where the holding party 

receives fixed and pays floating, as a receiver swap. 

Swap rate 

The fixed rate in an interest rate swap. Theoretically, this is determined by setting the IRS value to 

zero at inception. 

Swaption 

A swaption, also known as an option on an IRS, is the right, but not the obligation, to enter into a 

swap contract at a predetermined swap rate. Swaptions can either be i) European, in which case the 

only exercise date available is at the expiry of the option, ii) American, where exercise is possible on 

any date for a limited time span, or iii) Bermudan, where several predetermined dates for possible 

exercise are laid out for a limited time span. 

A swaption has the following components 

• An underlying swap, which the holder will enter into upon exercise. 

• Strike rate, which is the swap rate of the underlying swap. 

• Maturity date, after which the swaption has expired and cannot be exercised anymore. 

 

Short rate 

The short rate is the prevailing interest rate for an infinitesimally short period of time. Interest rate 

models that are used in this paper to price swaptions, describe the evolution of this rate. 

Term structure models 

Hull (2012) defines term structure models as interest rate models that describe the evolution of all 

zero-coupon interest rates. Hull further divides term structure models into equilibrium models and 

no-arbitrage models. 

In an equilibrium model, assumptions are initially made about economic variables. These specify the 

parameters of the model, which will in turn give bond and option prices, but most importantly a 

term structure as output. Examples of equilibrium models are the Cox, Ingersoll, Ross (CIR) model, 

and the Vasicek model. 
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No-arbitrage models improve on equilibrium models by providing an exact fit to the term structure. 

This is done by using today’s term structure of interest rates as input, instead of an output. Examples 

are the Hull-White one and two-factor models and the Ho-Lee model. 

Tail swap 

Stein and Lee (2010:11) define a tail swap as an IRS where if the swap is entered into between two 

payment dates, the full cash flow for that period is paid and received as if the swap was entered into 

at the beginning of that period. This is in contrast with a normal interest rate swap, where the first 

cash flow is prorated. 

Recovery rate 

Assume party A defaults while indebted to B. The recovery rate is the percentage of assets owed to 

B, that B would be able to recover. 

Probability of default 

The probability that a counterparty will default on the contract. It is expressed as a probability 

distribution over time. In this paper, it will be assumed as a constant. 

Numeraire 

The valuable good in which all prices in an economic model are denominated (Reis and Watson, 

2007:1). Realistically, this will be the money market account, but a riskless zero-coupon bond with a 

specified maturity is also a common numeraire (in mathematical models). 

DV01 

Hull (2012:804) defines DV01 as the dollar value of a 1-basis-point increase in all interest rates 

(parallel shift in yield curve), although some sources define it for a 1-basis-point decrease, rather 

than an increase. To clarify, it reveals by how much an instrument’s value will change in currency 

units for a basis point shift in the yield curve. In this paper, it will be calculated for a basis point 

decrease.  

Semi-analytical method 

A method for calculating CVA that views exposure over time as a series of swaptions. Considered less 

accurate, but quicker to implement than Monte Carlo methods. 

Simplistic method 

A method for calculating CVA that views exposure at the present as the (present) market value of 

the swap. 

 

 

 



18 

 

Mark to Market Accounting 

Harvey (2011) defines mark to market accounting as referring to “accounting for the fair value of an 

asset or liability based on the current market price instead of book value.” The method for 

determining the market price of swaps will be treated in the literature review in section 2.2.1. 

Over the Counter (OTC) 

Refers to derivative contracts that are customised between two counterparties. This is in contrast to 

exchange traded derivatives. 

1.4 Importance and benefits of the study 

As already noted, the semi-analytical method requires less time to implement than the Monte Carlo 

method. Firms that need to calculate CVA on a continual basis, but do not have a lot of time or 

resources for the process, will therefore find the semi-analytical beneficial. The approach has less 

accuracy and flexibility compared to the Monte Carlo method, but is much faster to implement and 

requires less resources. This allows firms with fewer infrastructures to estimate CVA with more 

accuracy, without sacrificing large amounts of resources to do so. 

Chapter outlines 

The reader has been made aware in this chapter of the motivation for this research assignment, as 

well as the basic plan for this paper. The reader has also been prepared for the following chapters by 

the definitions given here. In the following chapter, a detailed literature review will be provided 

regarding the theoretical foundations of the study. In chapter 3, the specific methodology employed 

in the study will be given, and in chapter 4 will be followed by a comparison of the results of the 

tests performed. This paper will conclude by stating the limitations of the study as well as discussing 

some areas for future research. 
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2 Literature review 

This literature review will cover all the technicalities necessary to understand the semi-analytical 

approach from a mathematical point of view. It begins by explaining the basic workings and pricing 

of IRS contracts, along with standard tools for mitigating credit risks inherent in swaps. CVA is then 

discussed, first at a basic level, after which a very detailed discussion is given on how it can be 

calculated under specific models, as well as under certain agreements, namely netting and collateral. 

A guideline on how to calculate CVA DV01 is also given under each model. 

2.1 Swap contracts 

An IRS contract, (which will be referred to from here on as a swap) is defined by Ferrara and 

Nezzamoddini (2013:6) as a bilateral contract between two parties to exchange cash flows based on 

different indices at periodic dates in the future. Each contract has a notional amount that 

determines the actual payments, normally by multiplying the notional by the specified rates. A plain 

vanilla swap, which is the type mostly discussed in this paper, is a contract to exchange fixed 

payments for floating payments at periodic dates in the future. These periodic dates are usually 

monthly, quarterly, semi-annually or annually. The periodicity of the two payment streams can also 

differ, for example, fixed payments might be quarterly, while floating payments are semi-annual.  

The exchange of payments will be achieved by one party’s (party A) agreement to pay the 

counterparty (party B) a fixed rate on the notional, periodically, while the counterparty agrees to pay 

party A, a floating (that is, variable) rate. This rate is normally determined by some publicly quoted 

rate, such as the LIBOR rate, or, in South Africa, the JIBAR rate.  

 

 

 

There are various possible motivations for entering into a swap contract: Party A, for example, might 

have a loan that it is currently paying JIBAR on, hence it suffers the risk of increasing interest rates. 

To hedge against this risk, party A could enter into a contract similar to the one described above. 

This means that A will receive floating rate payments, based on the same notional and index that its 

loan’s interest is calculated on, with which it can make payments on its loan, and in return pay B a 

fixed rate. This would have effectively transformed party A’s floating rate loan into a fixed rate loan. 

Party B, in this case, would normally operate under the belief that interest rates will fall after the 

swap was entered in, since B is now paying the floating rate. 

 

 

 

Figure 2-1: Payments exchanged on a payment date in a vanilla swap 

Figure 2-2: Payments exchanged if party A transforms a loan 

Loan A B Fixed Rate 

  Floating rate     Floating rate 

A B Fixed Rate 

    Floating rate 



20 

 

2.1.1 The  pricing of swaps (simplistic) 

Ferrara and Nezzamoddini (2013:6-7) states that the market value of a swap can be viewed as the 

difference in value between two risk-free bonds – one paying a fixed rate, the other a floating rate. 

For the party receiving fixed, this can be expressed mathematically as 

�(., ., /) 	= 	*��0!1 −	*�%3���/4 

 

(1) 

 

where 

• �(0,0, 5) is the current value of the swap that is at inception or already entered into, and 

that matures in 5 years. 

• 6789:; is the value of the fixed-rate bond at time 0 

• 67<=>?8@A is the value of the floating rate bond at time 0 

and, 

*��0!1 =	B��0!1C�(., ., /). �
(E + G�)� +	

/

�HE

B��0!1
(E +	G/)/ (2) 

  

*�%3���/4 =	C�(., (� − E)�, ��)�
(E + G�)� +	

/

�HE

B�%3���/4
(E +	G/)/ (3) 

 

assuming that there are 5 payments in total to be exchanged during the swap contract, and that 

payments have the same periodicity, and where 

•  ℎ is the length of each period in years (assuming all periods have the same length). 

•  �(0, 0, 5) is the current market swap rate for an IRS that matures 5 years from the 

present, or alternatively here, the fixed bond coupon rate. 

•  J789:; and J7<=>?8@A are the face values for the fixed and floating rate bonds, 

respectively. 

• K(0, (� − 1)ℎ	, �ℎ) is the annual forward interest rate between time (� − 1)ℎ and time 

�ℎ  

•  M8 is the required rate of return for a period of �ℎ, where � is the number of coupon 

periods up until that point in time, and ℎ is the length of each coupon period. 

•  5 is the number of periods until the bonds mature. 

In the simplistic view of swap rate pricing, the value of the swap contract is assumed to be zero at 

inception of the contract. This view also does not take into account CVA or DVA, thus it is assumed 

that each counterparty has a default risk of zero. The swap rate will be the coupon rate that the 

fixed value bond pays which will cause the value of the swap to be zero at inception, so 

�(0, 0, 5) = 	6789:; −	67<=>?8@A 

becomes 
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.	 = 	*��0!1 −	*�%3���/4 (4) 

 

Using the definitions for the fixed and floating rate bond, equations (1) and (2), with equation (3), a 

formula for the swap rate can be derived as 

    

�(., ., /) = 	 E − �(., ., /)∑ �(., ., OP)�P/�HE
 (5) 

where 

•  5 is the number of years, from inception of the swap, until the swap matures. 

•  Q is the number of payments (or periods) per year. 

The full derivation is given in Appendix A.  

Once again, note that these formulas describe a simplistic approach to pricing swaps, that is, without 

taking into account counterparty risk. In the real world, however, there normally exists counterparty 

risk, however small. Therefore the subsequent, necessary adjustment to the value of a swap to 

account for this riskiness, which is known as CVA and DVA (defined in section 1.3), is still required. 

2.1.2 Mitigation of credit risk 

Although there are many ways to mitigate counterparty risk (Gregory, 2012:41), only the two most 

common ways of doing so - netting and collateralisation - will be discussed and investigated in this 

paper. 

2.1.2.1 Netting 

Gregory (2012:46) divides netting into two categories: Payment netting and closeout netting. 

Payment netting 

Payment netting lets an institution combine its regular cash flows (daily, weekly, monthly, etc.) 

occurring on the same date with a certain counterparty, into one cash flow on that date. If, for 

example, party A owes party B R5 million and B owes A R6 million on a certain day, B would simply 

pay A the net value of those two amounts, which is R1 million. This increases operational efficiency, 

since now only one payment is made between the parties, instead of many, but also reduces risk in 

case of unexpected default by one of the parties.  

If payments were not netted between party A and B, and party A payed B R5 million on the morning 

of a certain day, expecting the payment from B during the course of the day, and B defaults later 

that day before paying A the amount due, A would lose the R6 million that it was entitled to. In 

comparison, if payments were netted A would have lost only R1 million.  

In a presentation by Pallavicini (2010:44-45), three simple cases for netting were considered. The 

first case is a portfolio of swaps consisting of swaps that are entered into on the same date, but that 

have different maturities. The netted portfolio is then equal to an amortising swap with decreasing 

principal. Diagrammatically, this portfolio is represented as follows 
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2.1.2.2 Collateralisation 

Gregory (2012:59) defines collateral as an asset supporting a risk in a legally enforceable way. The 

concept behind collateral is simple: if the exposure on an OTC derivative contract exceeds a certain 

amount (threshold amount), then the counterparty (party A) to whom the derivate has a negative 

net value has to post a certain agreed-upon amount. This amount will be collected by party B, the 

other party in the contract, in case A defaults.  

Collateralisation has clear benefits, as pointed out by Gregory (2012:60). Firstly, it limits credit 

exposures with counterparties, enabling institutions to do more business, keeping credit exposures 

within credit limits. It also allows institutions to do business with a wider variety of counterparties, 

as some institutions might, as matter of policy, not be allowed to do business with certain parties 

that fall below a certain credit rating. Collateralisation eliminates many of the inherent risks of 

dealing with low-rated counterparties. Since collateralisation will effectively reduce CVA, it will also 

allow derivative contracts to have more competitive prices. Finally, it will reduce capital 

requirements for institutions desiring to enter into certain derivative contracts. 

Generally, collateral agreements also have the following considerations: 

• Threshold amount: the required minimum exposure before collateral is posted, i.e. how 

much exposure each counterparty is prepared to accept. 

• Margin Call: a request by the party to whom the contract has net positive value, to the 

counterparty (with negative net present value) to post additional collateral. 

• Remargin period, or the frequency of margin calls: Generally the frequency at which CVA is 

calculated (e.g. daily, weekly, etc.). 

• Independent amount: amount that is posted over and above collateral, to account for 

additional risks, mainly the risk connected to the remargin period. 

• Credit support amount: total amount of collateral that is posted by a counterparty on a 

certain date. 

• Grace period: the amount of days before a defaulted counterparty’s position will be finally 

closed or liquidated, measured from the date of default. 

To simplify the analysis, though, the grace period and independent amount will be assumed as zero. 

Bringing threshold amount into the posting of collateral, the credit support amount on any date 
 
can be represented by the formula 

�3%%(�) = #0(�) + 	R	– 	(  

or  

�3%%(�) = #0(�)	– 	( (6) 

Where 

• �TUU(
) is the credit support amount (or collateral) on date 
 
• VW(
) is the exposure on date 
 

• X is the independent amount 

• Y is the threshold amount agreed upon by both parties at the signing of the contract 
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Note that this is a simplified version, as other amounts could also be added to the credit support 

amount. 

Collateralisation also changes the way a swap is valued. Since the amount that is posted is held by 

the party to whom the swap has a positive value, it will earn interest on that amount for the period 

that the collateral amount is held. This affects the pricing of the swap. However, it is a relatively 

complicated matter to make this adjustment, with most of the available literature on this matter 

theoretical, rather than practical. More importantly, it is not the main focus of this paper to value 

swaps, so therefore this adjustment will not be made when calculating current market values for 

swaps under collateral agreements. More on this topic can be found in a paper by Johannes and 

Sundaresan (2002). 

2.2 The swaption approach to calculating CVA 

Since swaps exhibit bilateral characteristics, the exposure resulting from a position in an interest rate 

swap can be represented as a series of swaptions. This particular approach was first formalised in a 

paper by Sorensen and Bollier (1994:24). They interpreted each swaption as the cost of replacing the 

swap that was lost (because of a counterparty’s default). This is the discounted expected exposure 

(EE) for the time of the possible default, at the current time. Given that two parties, A and B, enter 

into an interest rate swap, they represent the adjustment from A’s point of view as follows 

�Z[ 	= 	\�]	VV[			
where    

• �Z[   is the credit risk adjustment allocated to B’s risk of default  

• \�]  is the probability that B will default on the single default date 

• VV[ is the value of the option for A to replace the swap  

The formula above assumes that there is only one possible default date. Although greatly simplified, 

and written long before the global financial crisis of 2007 (which challenged many of the 

assumptions of credit risk previously held) the expression above communicates the essence of the 

swaption approach to calculating CVA. That is, that CVA is essentially the exposure multiplied (or 

weighted) by probability of default on that date. Note that in reality, �Z[  is calculated for each 

possible default date, which includes dates between coupon payment dates, then integrated to find 

the final value of CVA. These specifics, however, will be handled in section 2.2.1. 

To illustrate the parallel between exposure and a swaption, consider the following: Let the swap 

value, defined by S, have a negative value for party A at the time of party B’s default (a liability). 

Pykhtin and Zhu (2007:1) notes that it is convenient assume that the party that was defaulted on (A 

in this case) will enter into a similar contract with a different counterparty to maintain its position. A 

would therefore close out its position by paying B the market value of the contract, and receive the 

same amount upon entering into a similar contract with a third party, C. Therefore in this case, A’s 

net gain/loss would be zero. This is illustrated by Figure 2-6 below. 
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Figure 2-6: The case of the swap having a negative net value for A, if B defaults. Financially, the 

default event does not affect A. 

On the other hand, if the swap (S) had a positive value for A at the time of B’s default, meaning that 

the swap was an asset to A at that time, A would close out its position with B, receiving nothing 

(since B is defaulting) and enter into a similar contract with C, paying the market value of the 

contract, and suffer a net loss. This is described by Figure 2-7 below.  

 

 

 

Figure 2-7: The case of the swap having a positive net value for A, if B defaults. Financially, the 

default event affects A negatively. 

A’s exposure at any time can therefore be modelled as max(SA, 0), where SA is the market value of 

the swap that A has entered into, at the time of default. This is the formula for the value of a 

European Swaption at expiry.  

The example above is only for unilateral counterparty risk though, meaning that it takes into account 

only B’s possibility of default. In reality, normally both parties’ probability of default has to be taken 

into account. For this, Sorensen and Bollier (1994:28) suggest that a bilateral credit model has to be 

built. Suppose that A and B enter into an interest rate swap. Both parties have option positions that 

will create risk in both directions, both have credit risk, and both estimate future times at which 

their position will be an asset, and times at which their position will be a liability. Party A will 

estimate its credit risk as 

�Z[ 	= 	\�] 	VV[	–	\�[	VV]		
where the variables have the same interpretation as in the unilateral approach. Note that the value 

\�[	VV]	 represents the DVA (see section 1.3) from party A’s point of view. The formula above is in 

accordance with McGlinchey (2014), who states that bilateral CVA is the netted values of unilateral 

CVA and DVA. Since this paper focuses solely on the CVA, only a unilateral model will be built. 

When using the semi-analytical approach, Gregory (2012:158-159) states that simplifying 

assumptions regarding the risk factors behind the exposure have to be made. This is the main reason 

for the semi-analytical approach being an approximation, rather than a more exact estimate. 

Gregory also states that (i) path-dependent factors, such as early exercise decisions, are hard to 

reflect in the model, (ii) when collateral is present, the formulae in the analytical approach have to 

be altered to account for this, and (iii) only simple cases of netting can be incorporated in order for 

the model to still have its simplifying advantages (see section 2.1.2). 
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2.2.1 Some specifics 

Sorensen and Bollier (1994), although being the first recorded to mention the idea of modelling EE 

on a certain date as a swaption, only presented a simplified version of the idea. A more practical 

treatment is given here. 

Once expected exposures for a satisfactory number of future dates have been calculated, the 

required CVA can then be calculated. CVA will give a type of summary to all the expected future 

exposures, weighting each figure according to the probability of default at that particular time.  

Stein and Lee (2010:10) express CVA as 

  

�^_ = 	` (E −  !")'���%(., �, �)a(�)1�
�

.
 (7) 

 

where 

• \?>8<(0, 
, �) is the value at time 0 of an option to enter into the tail of a payer swap at time 

t, that matures at time T. This value also represents the EE. If CVA for a receiver swap was to 

be calculated, Z?>8<(0, 
, �) would have been used instead. 

• b(
) is the probability of default density at time t 

o Note that for this paper, simplistic recovery rates and probability of default will be 

assumed, hence probability of default will also be considered independent of \?>8<(0, 
, �) 

• Zcd is the recovery rate, which we will define as zero (as it is out of the scope of this 

research assignment) 

Gregory (2012:243) defines a discrete formula for CVA as 

�^_	 ≈ 	 (E	– 	 !")C�(., ., ��)
P

OHE
##(��)'�(��fE, ��) 

where  

• ( )iEE t  is the expected exposure at time ti (the adjusted swaption value) 

• 1( , )i iPD t t−  is the probability of default between time ti-1 and ti 

• �(0, 0, 
8) is the value at time 0 of a zero-coupon bond, as seen at time 0, that matures at 

time 
8. This will be referred to as the discount rate. 

A full proof for formula (7) is given in Appendix A. Formula (7) implies that CVA can be seen as the 

area under the plot of probability of default times EE, on the y-axis, against time, on the x-axis.  
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In the case of modelling financial exposure to default on a swap contract, a slight adjustment has to 

be made to the underlying swap. In the event of default between two payment dates, say
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Alternatively, it can be written as 

�(�, �, �j)�(�, �, �j)�E + 		C K�
, 
8 , 
8ig)�(
, 
, 
8ig)ℎ8 2 	�. ����, �, �j)�E + C �(
, 
, 
8ig)ℎ8
@fg
8Hh

@fg
8Hh ) 

�$(�, �, �) can also be expressed with formula (8), except that in this case, �E	is the last reset date 

before date t, as shown in Figure 2-8.  �$��, �, �) can therefore be written as 

�(�, �E, �j)�(�, �E, �j)�E + 		C K�
, 
8 , 
8ig)�(
, 
, 
8ig)ℎ8 2 	�. ����, �E, �j)�E + C �(
, 
, 
8ig)ℎ8
@fg
8Hh

@fg
8Hh ) 

In order to transform �(t, 
, �) to �̅(t, 
, �), it is convenient to find the difference between the two 

swaps and add it to �(t, 
, �). Stein and Lee (2010:14) noted however that the difference can be 

approximated by the time 0 value of the difference between the two swaps. Using the alternate 

definition of �(
, 
, �) and that of	�̅�
, 
, �), this can be expressed as 

       

����%(�) = 	 �$�., �, �) 2 	��., �, �) = 	�� ��., �, �j)�(., �E, �j) 2 	E 2 	�. �� 2 �E	��., �, �j)) (9) 

 

Since it will be assumed that all fixed and floating rate payments occur at the same times, there will 

be no distinction between floating and fixed rate periods from here on, in the case of �g and �gmmm.  
Since the price of a swaption is the expected payoff at time t, the swaption price at time 0 can be 

given as   

'(., �, �) = 	,�.	#. nPop����, �, �), .),(�) q (10) 

 

where r(
) is the value of the chosen numeraire at time 
. 

Now, taking into account the difference between the forward start swap and a tail swap entered 

into at time 
, given by �?>8<(
), a substitution must be made into the formula above. This is because 

the swaption used in the CVA calculation will have a tail swap as underlying asset, instead of a 

forward start swap as an underlying asset.  

Since 

 �?>8<(
) = 	 �̅�0, 
, �) 2 	��0, 
, �), we obtain   �̅(0, 
, �) = 	 �?>8<�
	 + ��
, �), therefore 

Pop(�$(�, �, �), .) = Pop(����%(&) + �(�, �, �), .) = Pop(�(�, �, �), 2����%(�)) + 	����%��	 (11) 

 

Therefore, to price a swaption with the tail swap as underlying, equation (11) must be substituted 

into equation (10). This finally leads to 

'���% = ,(.)s. Pop(tm(&), .),(&) 	� 			,�.	#. nPop�����% + 	���	, .),(�) q (12) 
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The opposite of the scenario just discusse

downward slope, as shown below, 

: Falling term structure (expectation that rates will decrease)

since now the receiver of fixed payments (who is short the swap) will carry the exposure in a similar 

manner as the payer of fixed did in the previous scenario.

In a flat term structure, the expected exposure, assuming the term structure will not change, is zero 

at every point in time during the swap.  

The fact that the term structure has such a significant effect on CVA is one of the main reasons 

stated that CVA should be analysed under a term structure model, 

has been defined in section 1.3. 

White model has the ability to characterise the likely behaviour of the short rate with 

volatility and mean reversion parameters, as well as being able to mimic the observed term 
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: Rising term structure (expectation that rates will increase)

The opposite of the scenario just discussed will be applicable if the term structure 

: Falling term structure (expectation that rates will decrease)

who is short the swap) will carry the exposure in a similar 

manner as the payer of fixed did in the previous scenario.

In a flat term structure, the expected exposure, assuming the term structure will not change, is zero 

The fact that the term structure has such a significant effect on CVA is one of the main reasons 

stated that CVA should be analysed under a term structure model, 

White model has the ability to characterise the likely behaviour of the short rate with 

volatility and mean reversion parameters, as well as being able to mimic the observed term 

: Rising term structure (expectation that rates will increase)

d will be applicable if the term structure 

: Falling term structure (expectation that rates will decrease)

who is short the swap) will carry the exposure in a similar 

manner as the payer of fixed did in the previous scenario. 

In a flat term structure, the expected exposure, assuming the term structure will not change, is zero 

The fact that the term structure has such a significant effect on CVA is one of the main reasons 

stated that CVA should be analysed under a term structure model, 

White model has the ability to characterise the likely behaviour of the short rate with 

volatility and mean reversion parameters, as well as being able to mimic the observed term 

: Rising term structure (expectation that rates will increase)

d will be applicable if the term structure 

: Falling term structure (expectation that rates will decrease)

who is short the swap) will carry the exposure in a similar 

In a flat term structure, the expected exposure, assuming the term structure will not change, is zero 

The fact that the term structure has such a significant effect on CVA is one of the main reasons 

stated that CVA should be analysed under a term structure model, 

White model has the ability to characterise the likely behaviour of the short rate with 

volatility and mean reversion parameters, as well as being able to mimic the observed term 

 

: Rising term structure (expectation that rates will increase) 

d will be applicable if the term structure exhibited a 

 

: Falling term structure (expectation that rates will decrease) 

who is short the swap) will carry the exposure in a similar 

In a flat term structure, the expected exposure, assuming the term structure will not change, is zero 

The fact that the term structure has such a significant effect on CVA is one of the main reasons 

stated that CVA should be analysed under a term structure model, 

White model has the ability to characterise the likely behaviour of the short rate with 

volatility and mean reversion parameters, as well as being able to mimic the observed term 

 

exhibited a 

 

who is short the swap) will carry the exposure in a similar 

In a flat term structure, the expected exposure, assuming the term structure will not change, is zero 

The fact that the term structure has such a significant effect on CVA is one of the main reasons 

stated that CVA should be analysed under a term structure model, 

White model has the ability to characterise the likely behaviour of the short rate with 

volatility and mean reversion parameters, as well as being able to mimic the observed term 
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structure. The Hull-White model thus allows the term structure to change in the future, which is a 

realistic scenario, since expectations change all the time. Approximating EE by just using NPV, on the 

other hand, does not take changing expectations into consideration. The volatility and mean 

reversion parameters are to be estimated by matching swaption prices implied by the model to 

swaption prices observed in the market. This is known as calibrating the model, and will be discussed 

at a later stage in the literature review. 

 

2.3 The Hull-White one-factor model 

The Hull-White one-factor model is a term structure model, specifically a no-arbitrage model, which 

describes possible evolutions of the short rate over time. Hull (2012:691-692) defines the process for 

the short rate in the Hull-White one factor model as 

   

1G = uv(�) 2 �G(�)w1� + x1y (13) 

 

The equation above can be adapted to describe changes in the short rate over measurable changes 

in time (e.g. daily changes in short rates), which is known as the discretised version of the equation 

   

zG = uv(�) 2 �G(�)wz� + 	x√∆�	� (14) 

 

where 

• }(
) = J?(0, 
) + 	�J�0, 
) + ~�
h> (1 2 	 cfh>?	 

o J�0, 
) is the instantaneous forward rate at time 
, as seen at time 0  

o  J?(0, 
) is the first partial derivative of J(0, 
)  with respect to 
. 

• � is the mean reversion rate 

• M(
) is the short rate at time t 

• �
 is the incremental change in time, measured in years 

• � is the volatility parameter 

• �	~	��0, 1) 
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2.3.1 European swaption pricing under the one-factor model 

Consider a european swaption that matures at time �, where the underlying swap matures at time ��. Given model parameters � and �, the price of a swaption, denoted '()	�., �, ��), is given by 

Bateson (2011:311) as 

� ��(., ., �)-(2�∗) 2 	��., ., ��)-(2�∗ 2 	��	 2 		
C ��., ., ��)��-(2�∗ 2 	��	��
����

� 

 

(15) 

 

while the price of a european receiver swaption, denoted  ()(., �, ��), holding all other factors 

constant, is given by 

� �2�(., ., �)-(�∗) + 	��., ., ��)-(�∗ + 	��	 + 		
C ��., ., ��)��-(�∗ + 	��	��
����

� 

 

(16) 

 

where 

• � is the notional value on the swap 

• �(�) is the cumulative standard normal distribution function 

• 
8  is the time (in years) of the i-th swap payment 

• �∗ is the value of Z which satisfies the boundary condition of the swaption’s exercise 

• �8 is volatility of the discount bond price at time T, maturing at time 
8  

Boundary condition, above, refers to the condition where the swaption is at-the-money at the 

exercise date, as seen from the valuation date. 

The forward volatility of the discount bond price, �8, is derived from the following expression, given 

by Bateson (2011:306) as  

�j(�, �, �) = 	 xj �E 2 �p�u2��� 2 �	w� �j �E 2 �p�u2j��� 2 �	wj� � 

(17) 

 

where �(
, �, �) is interpreted as the volatility of the discount bond price at time s, which matures at 

time �, as seen at time 
. 

All the values in the swaption price formula (15) should be readily available, except �∗. It will now be 

discussed how this value could be obtained. 
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�∗ is the boundary condition for exercise, which is required to integrate (thus, find the expected 

value of) the swaption’s value at expiry. The expression below, which will be derived fully in 

Appendix A, determines the swaption’s price at expiry 

      

��0((E 2 �(., �, ��), .) 2 	
 C ��., �, ��)��

���� ��, .) (18) 

 

 

The point where the expression above changes from zero to a positive value, is the boundary point 

of exercise. This point is given by 

E 2 �(., �, ��) = 	
 C ��., �, ��)��

���� �� (19) 

 

     

or in terms of �∗, 

E 2 �(�, ��, �∗) = 	
 C ���, ��, �∗)��

���� �� (20) 

 

Since �(0, 
, �) is stochastic if 
	 ≠ 0, it would thus be the only determinant of the above 

expression’s value after the given values have been established. It is given by 

    

�(., �, �) = 	��., ., �)�(., ., �) �p�	�2 Ej�j�., �, �) 2 	��., �, �)�) (21) 

 

It makes sense to re-parameterise the expression above with � as a parameter, therefore we have 

�(�, ��, �∗) = 	��., ., ��)�(., ., �) �p�	�2Ej�j�., �, ��) 2 	��., �, ��)�∗) 

 

 

Note that � is the only unknown, or stochastic variable in expression (21), so therefore it follows 

that � is the only variable element in expression (19), so therefore a value �∗ must be found such 

that (20) holds. This value �∗ can be found by a root finding algorithm, which was implemented with 

a package in the Python language. Source text for the program used to find the price of a swaption 

under the Hull-White model can be found in Appendix C. 
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2.3.2 Adjusting for accrued and partial payments lost  (Tail Swaption) 

Consider a payer swap, currently held, that matures at time ��. Assume that accrued payments are 

lost, and a default at time � occurs between two payment dates, �� and �g. The EE at time �, 

denoted '()	���%�., �, ��), is given by 

�(., ., �.)-(2�∗∗ + 	�$ 2 	�	�p �u��$ 2	�$jw			 2 ��., ., �)-(2�∗∗)2 
(� 2 �.)�(., ., �E)-(2�∗∗ 2 �) + 	'()∗ �., �, ��) 

 

(22) 

 

 

In the case of a receiver swap, keeping all other factors constant, the EE at time �, denoted  ()	���%�., �, ��), is given by 

2�(., ., �.)-(�∗∗ 2 	�$ + 	�	�p�u��$ 2	�$jw + ��., ., �)-(�∗∗)+ 
(� 2 �.)�(., ., �E)-(�∗∗ + �) + 	 ()∗ �., �, ��) 

(23) 

 

 

where � = �(0, �, �g) and �̅ = �(0, ��, �g), and �∗∗ is the value of � that satisfies 

�(., �, �∗)�(., �., �∗) 2 	E 2 	
�� 2 �.	���, �E, �∗) + 	E 2 ���, ��, �∗) = 	
 C ���, ��, �∗)��

���� �� (24) 

 

 

'���a��3/∗ (., �, ��) and  ���a��3/∗ (., �, ��) are equations (15) and (16), respectively, except that 

instead of �∗,	 we will use �∗∗. Note that if default occurs on a payment date, the tail swaption 

becomes an ordinary swaption, described in the previous subsection. 

Equations (22) and (23) were derived using Stein and Lee’s (2010:14) suggestion that EE can be 

calculated by altering the expectation to calculate a swaption price to 

 

'�., �, ��)() 	� ,�.	s.Pop�tm��, �, ��)	, .),(�) = 			,�.	#. nPop�����% + 	��., �, ��), .),(�) q 

 

(12) 

 

where �?>8<(�) (from section 2.2.2) is the difference between �(0, �, ��) and �̅(0, �, ��), and is 

equal to   

�$(., �, ��) 2 �(., �, ��) = � � �(., �, �E)�(., �., �E) 2 	E 2 	
�� 2 �.	��., �, �E)�	 (9) 

 

Note that slightly different (simplified) swaps were considered compared to the ones that Stein and 

Lee used in their paper. Stein and Lee used swaps with different payment periodicities and 



36 

 

frequencies, while in this paper, the simplification is made that fixed and floating payments will 

occur on the same dates, hence the slight difference in the formulation for the swap formulae. A full 

derivation for equations (22) and (23) are shown in Appendix A.  

 

2.3.3 Adjusting for collateral agreements 

Consider a payer swap, currently held and maturing at time ��, with regular collateral posting. Let 

the collateral threshold amount be defined by Y. Also, for simplicity, disregard the grace period and 

assume that collateral is posted on every date that EE is calculated. Assuming partial payments 

cannot be recovered (see section 2.2.2) exposure on date 	�, denoted  ()	���%�., �, ��), is then 

given by 

 '()	���%�., �, ��) 2 	'∗∗()	���%�., �, ��) + 	(-�2�∗∗∗	 
 

(25) 

 

  

And for a receiver swap, denoted  "3%%��!G�%(., �, ��), keeping all other factors constant, 

  ()	���%�., �, ��) 2 	 ∗∗()	���%�., �, ��) + 	(-��∗∗∗	 
 

(26) 

 

 

Where �∗∗∗ is the value for � that satisfies 

�(�, �E, �∗∗)�(�., �E, �∗∗) 2 	E 2 	
�� 2 �E	���, �E, �∗∗) 	+ 	E 2 ���, ��, �∗∗) = 	
 C ���, ��, �∗∗)��

���� �� + (�  

with Y the threshold amount. '∗∗()	���%�., �, ��) and  ∗∗()	���%�., �, ��) are equations (22) and 

(23) respectively, except that  �∗∗∗, instead of �∗∗ will be used.  

The formula above was derived from Gibson’s (2005:6) suggestion that under collateral agreements, 

EE can be calculated by taking expectation of 

,(.)# nPop	��$��, �, ��) 2 Pop��$(�, �, ��) 2 	(, .� , .),(�) q 

 

 

 

A full derivation is given in Appendix A. 
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2.3.4 Expected exposure DV01 

Henrard (2005:2) derived an approximation for the delta of a payer swaption as 

2 �'�G� = 	C"�-�2�∗ 2 ��	 ���., ��)�G�
/

�H.  

 

(27) 

 

 

where, 

• d8 = 	 I8� for 1	 ≤ 
	 < 5, d� � 21,  and d@ � 1 +	I8� 

• M�  is the j-th factor that affects the term structure 

Similarly, the approximation for the delta of a receiver swaption is given as 

� �G� �	C"�-��∗ + ��	 ���., ��)�G�
/

�H.  

 

(28) 

 

where the parameters have the same meaning as with the swaption pricing formulae. 

The M�  parameter needs some further clarification. It can be any factor that affects the term 

structure, for example forward rates or zero-coupon bonds. In the case of forward rates, for 

example, the delta of the swaption with respect to the forward rate that prevails between 15 and 18 

months from now, might be sought, so then M�  would represent this forward rate. In particular, in 

this paper M�  will represent a parallel shift in the yield curve, which is an allowable choice for M�, 

according to Henrard (2005:2).  

In the context of the calculation of CVA, the sum of the delta of all the swaptions that make up the 

portfolio for the purposes of CVA calculation can be seen as the change in CVA resulting from an 

incremental change in M�.  

In this paper, the delta formula will be used to calculate a DV01 measure instead, which is the 

change in a swaption’s value for a basis point drop at every point on the zero curve, using forward 

difference for the 
��(�,?�)� ¡  term. This as a whole will be described further in the research 

methodology, but forward difference will be defined in the next subsection. Note that from now on, 

a parallel shift in the yield curve by 5 units will be represented by ¢(5). More specifically, a basis 

point shift will be  ¢(£b). We will therefore write equation (27) alternatively as 

2 �'��(¤a) = 	C"�-�2�∗ 2 ��	 ���., ��)��(¤a)
/

�H.  

 

(27) 

with the same modification done to equation (28), if the alternative form is preferred. 
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2.3.5 Forward difference 

A derivative can be estimated numerically by difference methods. Specifically, the forward 

difference method will be of interest in this paper. Urroz (2001:32) defines forward difference as 

¥¦¥W = ¦(W� + 	I	 2 	¦�W�	I  

where 

• ¦	 is a continuous function at W� 

• I is a very small number (tending to infinity, ideally) 

For calculating DV01, though, we will use the formula above, since we want to find the amount by 

which K�W�	 changes at the point W� for each 0.0001 (basis point) decrease in W�. The following 

formula will therefore be used 

1�10 �.. ...E	 � �^.E � 4�0. + 	�	 2 	4�0.	� �.. ...E	 
 

(29) 

 

 

2.3.6 Netting 

Only netting cases as described in section 2.1.2.1 were considered for the Hull-White model. The 

principal values for each swap that the party holds at the time that EE is calculated for, were simply 

added. This new value was then used as the principal for one swap contract, and EE was calculated 

accordingly. 

2.3.7 Model Calibration 

In order to make the model relevant for the situation that an institution would find itself in, the 

model has to be calibrated to available swaption prices in the market that that the institution 

operates in. This means that the mean reversion parameter, �, and the volatility parameter, �, must 

be found such that swaption prices implied by the model resembles swaption prices in the market as 

closely as possible. In a paper by Gurrieri, Nakabayashi and Wong (2009:12-14), three methods for 

the calibration of the Hull-White one-factor model to swaption prices are proposed. 

 

• Method 1 

Using this method, a value for � is estimated while mean reversion (�) is held fixed at an arbitrary 

constant specified by the analyst. The following expression is minimized 

 

§�(¨) = 	CC)�,� �'^��31u��,©�w(x)'^�ª�u��, ©�w 2 	E�j/�«E
�HE

/�
�HE  (30) 
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where 

o ¬8 is the i-th maturity considered 

o ­�  is the j-th tenor considered 

o \®¯°?u¬8 , ��w is the observed market price of a swaption with maturity ¬8 and 

tenor ��  

o \®>̄ =;u¬8,��w(�) is the price of a swaption under the Hull-White one-factor model 

with maturity ¬8 and tenor ��, and fixed reversion rate � and volatility � 

o ±8,�  is the weight assigned to a swaption with maturity ¬8 and tenor ��  

 

• Method 2 

This method relies on first finding reversion rate � by an approximation method, then finding σ such 

that swaption prices generated by the model resembles market swaption prices as closely as 

possible. The approximation method relies on the following result 

^���au��, ��w^���a(��, �ª) = ²u�(., ��) 2  �(., ©ª)w*((��, ©�)³�(., ��) 2  �u., ©�w´ *(��, ©ª)µ
j

 (31) 

 

 

where 

• ®¶·>¸u¬8 , ��w is the approximated variance of a swap, based on implied volatility from 

swaptions with maturity ¬8 and tenor ��, using a model with a specific mean reversion 

• 6u¬8 , ��w = gf¹º»u>(?f�)w>  

The value of this equation is independent of the volatility, which makes its usage appropriate for 

finding the volatility in a step-by-step procedure, as is the case here. Equation (31) above gives the 

ratio between the variances of two specified swaps. Thus the square root of the equation above is 

taken to find the volatility ratio, which is then compared with market implied volatilities, using the 

equation below, which will then be minimized to find the appropriate value for the mean reversion 

parameter. 

B(�) = 	C C )�,�iE)�,� �¼^���au��, ©�iEw^���au��, ©�w (�) 2 	 R^�,�iER^�,� �
j/�f	E

�HE
/�
�HE  (32) 

 

 

where, 

• X®8,�  is the market implied volatility for a swaption with maturity ¬8 and tenor ��  

Hence the value for � that gives the lowest value for J(�) is the calibrated mean reversion 

parameter. 
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The next step is to find the volatility parameter. This is done by using method 1, but using the mean 

reversion � found in step 1 of method 2, instead of an arbitrary value for �. 

• Method 3 

Method 3 involves optimizing for the mean reversion and volatility at the same time by minimizing 

the following formula with � and σ as variable parameters 

 

§(x, �) = 	CC)�,� �'^��31u��,©�w(x, �)'^�ª�u��, ©�w 2 	E�j/�«E
�HE

/�
�HE  (33) 

 

 

To increase efficiency, method 2 could first be employed to find initial guesses for � and �. 

Gurrieri, Nakabayashi and Wong found that method 2 adapted very well to changes in behaviour of 

interest rates. While method 3 generally gave the highest accuracy regarding swaption prices 

generated by the model, its computation took much longer than that of method 2. Method 1 

performed similar to method 3 as long as the swap market’s behaviour remained relatively 

unchanged for the period from which swaption data used for calibration, was extracted. 

Note that Gurrieri, Nakabayashi and Wong also found that the three calibration methods used can 

also be used for time dependent sigma and mean reversion parameters. In this paper, however, only 

constant � and � will be used. 

 

2.4 Black’s model 

When using Black’s model to price interest rate derivatives, two key assumptions are made. The first 

is that forward rates are lognormally distributed. The second, and most important, is that forward 

starting swap rates are lognormally distributed. The assumption that forward rates are log-normally 

distributed lies on the following assumed stochastic formula, given by Bateson (2011:303) for 

percentage change in forward rates 

1�(�, �, � + �)�(�, �, � + �) = 	2x��, � + �)1y(�) 
(34) 

 

 

It can be shown from the formula above that forward rates are given by the following 

�(�, �, � + �) = 	��., �, � + �)�p�	�2�jj 2 ��	 (35) 

 

 

where, 

• � = 	���, � + ℎ)√
 	� 	�√
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•  ���, � + ℎ) is the volatility of the percentage change in forward rates between times � and � + ℎ. It will be assumed constant. 

•  � is a standard normal random variable 

2.4.1 European swaption pricing under Black’s model 

Hull (2012:660-661) gives the current value of a european payer swaption, denoted '*�(., �, ��), 

maturing at time �, with underlying swap maturing at time ��, given volatility parameter � under 

Black’s model as 

�_(.)��.-(1E) 2 	�
-�1j	]  

(36) 

 

The value of a european receiver swaption, denoted  *�(., �, �), given the same underlying and 

model parameters, is given as 

�_(.)�
-(21j) 2 	 �.-�21E	] 
 

(37) 

where, 

• ½(
) is defined as 

_(�) = 	 C���iE 2	��	���, ��iE)�fE
�H.  

 

(38) 

 

 

• �� is defined as 

						�. � ��., �.) 2 	��., �-)_(�)  
(39) 

 

• ¥g is defined as 

 

1E = ¾¿ ³�.�
´ + ¨j�j¨√�  
(40) 

 

• And ¥h 

1j = 	 ¾¿ ³�.�
´ 2 ¨j�j¨√� � ÀE 2 	¨√� (41) 
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2.4.2 Adjusting for accrued and partial payments lost (Tail Swap) 

Consider a payer swap, currently held, that matures at time ��. Assume that accrued and partial 

payments are lost, and that a default at time � occur between two payment dates, �� and �g. The EE 

at time �, denoted '*�	���%�., �, ��), is given by 

_(.)� Á��. + (� 2 �.)�._(.) � -(1E) 2 	�
 + �� 2 �.	
	��., �, �E)_(.) � -(1j)Â 

 

(42) 

 

 

For a receiver swap, keeping all other factors the same, the EE, denoted  *�	���%�., �, ��), is given 

by 

_(.)� Á�
 + (� 2 �.)Ã	Ä�., �, �E)_(�) � -(21E) 2 	��. + �� 2 �.	�._��	 �-�21j	Â 
(43) 

 

 

where K� is equivalent to K(0, ��, �), the annual forward interest rate between �� and �, as seen at 

time 0, and 

1E = ¾¿ Á ³�.f �._(.)´
Å
i
u�«�Ew�u.,�,�Ew_(.) ÆÂ + xj

j �
x√�  

1j = ¾¿ Á ³�.f �._(.)´
Å
i
u�«�Ew�u.,�,�Ew_(.) ÆÂ 2 xj

j �
x√� = 1E 2 	x√� 

 

As in the Hull-White case, we used �?>8<(�) to transform �(0, �, ��) to �̅(0, �, ��), then took the 

expectation to find the value for a tail swaption, as given in Stein and Lee (2010:14), to represent EE: 

,(.)#. nPop(�(�, �, ��) + 	����%��	, .),(�) q = 	_�.	�	# Ç��0 Å�� 2 	
 + ����%��	_��	 , .ÆÈ 

A full proof for this formula, and for the ordinary swaption formula can be found in Appendix A. 
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2.4.3 Adjusting for collateral agreements 

Consider a payer swap, currently held and maturing on date ��, with regular collateral posting. Let 

the collateral threshold amount be defined by Y. Also, for simplicity, disregard the grace period and 

assume that collateral is posted on every date that EE is calculated. Assuming that accrued payments 

and partial payments cannot be recovered, the EE on date �, denoted '*�	"3%%��!G�%�., �, ��), is 

given as 

'���%(., �, ��) 2 	_�.	�Á��. + �� 2 �.	�._��	 �-�1E	 		
2 	� (�_��	 + 
 + 
�� 2 �.	��., �, �E)_(�) � -(1j)Â	 

 

(44) 

 

 

In the case of a receiver swap, keeping all other factors constant, EE on date �, denoted  *�	"3%%��!G�%�., �, ��), is given by 

 ���%(., �, ��) 2 	_�.	�Á	� (�_��	 + 
 + 
�� 2 �.	��., �, �E)_(�) � -(21j)
2 ��. + (� 2 �.)�._(�) � -(21E)Â 

 

(45)   

 

In both cases, 

¥g = ¾¿ Á ³�.f	 �._�.	´Å (�_�.		i	
i
u�«�.w�u.,�,�Ew_(.) ÆÂ + xj
j �

x√�  

 

¥h = ¾¿ Á ³�.f �._(.)´
Å (�_(.)	i	
i
u�«�.w�u.,�,�Ew_(.) ÆÂ 2 xj

j �
x√�  

 

Equations (44) and (45) were derived using Gibson’s (2005:6) suggestion that EFE can be calculated 

by taking expectation of 

,(.)# nPop	��$��, �, ��) 2 Pop��$(�, �, ��) 2 	(, .� , .),(�) q 

The full derivation is given in Appendix A. 
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2.4.4 Netting 

Netting under Black’s model was handled exactly the same as described in section 2.3.6 under the 

Hull-White model. 

2.4.5 Calculation of  expected exposure DV01 

A numerical approximation was used for the DV01 measure for CVA. No solid literature could be 

found on a practical calculation method, and was derived primarily from the definition of DV01, 

which is defined as the dollar value of a basis point change in interest rates (Hull, 2012:804). To 

clarify, it is the amount by which an instrument changes when a parallel basis point shift occurs in 

the yield curve. Since the method is an improvisation, it is outlined in the research methodology 

under section 4.5.2. 

2.4.6 Model calibration 

Black’s model was calibrated by directly using implied volatilities relevant to the swaption’s maturity 

and tenor. The actual implied volatility matrices used on each date are listed in Appendix B. This 

method was used because according to Hull(2012:660-661), implied volatilities are obtained by using 

the actual swaption price in the market as an input into Black’s model, then finding the volatility that 

would have produced that swaption price as an output. The exact interpolation method is outlined 

under section 4.3.2 in the research methodology, since the interpolation method was also an 

improvisation.  

Note that when calculating CVA on a swap, this method necessarily implies that the parameters for 

Black’s model will be time-dependent, since the tenor of the swap changes as time passes on. 

2.5 Summary 

A relatively comprehensive summary of the knowledge necessary to understand the intricacies of 

CVA calculation was given in this literature review. The basic theory of simplistic IRS pricing was 

handled first, along with how risks involved in holding swap contracts can be mitigated. This was 

followed by an overview of the swaption approach to calculating CVA. A more detailed treatment of 

CVA calculation followed. This was done so that the swaption approach as a whole would make 

better sense to the reader, after which the mathematics that follows would be easier to understand.  

The detailed treatment of CVA calculation involved adjustments made to the underlying swaps in the 

swaption contracts, a discussion of factors that affect the value of CVA, and then a detailed 

description of the Hull-White and Black models used in the swaption valuation. This description 

included the basic formulae for pricing swaptions, as well as the exact adjustments to each formula 

to provide for collateral and netting agreements. Each of these sections then concluded with 

discussions of and formulae for EE DV01 calculation and model calibration. In certain cases, where 

no solid academic literature could be found on exact calculation methods, improvised methods were 

used. These will be discussed in the research methodology in section 4. 
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3 Rationale behind using swaption approach 

Calculating a value for CVA (using the semi-analytical method) is clearly much more effort than just 

using current market values for the current swap portfolio. The justification for using the more 

involved semi-analytical method is outlined in this chapter. 

The textbook method for calculating current swap values is to use equation (5) 

�(., ., /) = 	 E 2 Ä�., ., /)∑ �(., ., �P)�P/�HE  

The equation above is derived from the assumption that at inception, the expected floating portion 

and fixed portion of a swap contract have to be equal. The expected floating rates implied from the 

term structure (which is a reflection of current market expectations of future interest rates) are used 

for the floating rate payments, in the simplest implementation of swap rate calculation. This does 

not take into account that expectations may change, which can be thought of as the “volatility” of 

expectations.  

“Volatility” of expectations can be gauged from the volatility parameter � of a calibrated term 

structure model, such as the Hull-White model used in this paper. In the case of the Hull-White 

model, � is used to describe the volatility of the short rate, which will directly influence the volatility 

of the term structure. The term structure’s volatility will influence the volatility of the swap rate, 

which will in turn influence the volatility of exposure to counterparty default risk. To illustrate, 

consider Figure 3-2. It is a simulation of 20 different structures that could be observed one year from 

the present date, ending ten years from the present date. Similarly, Figure 3-3 shows simulated term 

structures that could be observed 2 years from now. These term structures were each used to 

calculate an implied swap rate for each simulation one and two years from now, respectively. These 

are shown in Figure 3-4.  The Hull-White one-factor model, with 

• � = 1% 

• �  = 5% 

• Increments between payment dates as 6 months 

• And a commonly observed, but fictional term structure (Figure 3-2) 

was used to simulate these different term structures using equation (21), which allows future zero 

coupon bond prices to be stochastic. 
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3-1: Rising term structure used for simulations in this chapter

3-2: 20 possible term structures that could be observed one year from the present

: Rising term structure used for simulations in this chapter

: 20 possible term structures that could be observed one year from the present

: Rising term structure used for simulations in this chapter

: 20 possible term structures that could be observed one year from the present
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years in the future

 

3-3: 20 possible term structures that could be observed 2 years from the present

3-4: 20 possible swap rates that could be observed at each time from the present up to 10 

years in the future 

: 20 possible term structures that could be observed 2 years from the present

: 20 possible swap rates that could be observed at each time from the present up to 10 
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: 20 possible swap rates that could be observed at each time from the present up to 10 
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Figure 3-4 shows how many different possible swap rates could be observed in the future, for 

interest rate swaps that end on the date (ten years from the present). All these swaps therefore 

represent the possible costs of replacing a swap that was defaulted on by a counterparty. If the term 

structures appear too volatile, consider Figure 3-5, a graph of 10 year government bond yield for 

different specified countries. (Ro, 2014) 

 

 

Figure 3-5: Historical 10-Year Government bond yields for various specified countries 

 

In Figure 3-5, it can be seen that a 10 year government bond can vary considerably in yield over the 

course of just a few years. Figure 3-5 does not even take into account the big jumps in interest rates 

that occurred during the 2007/2008 financial crisis and even more at the start of the 80’s, as shown 

below (Quadrini and Wright, 2012). 
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Figure 3-6: Observed US term structures between 1960 and 2010 

 

It is therefore clear that market expectations about future interest rates can change considerably 

over relatively short periods of time, thus swap rates tend to vary considerably over time too, as 

shown below (van Dalen et al. 2014) 

 

Figure 3-7: Historical swap rates for specified terms 
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If swap rates can vary considerably over time, then a simple mark-to-market assessment of CVA will 

also vary considerably. This is because swap rates on a certain date only takes into account the 

market’s expectations of interest rates on that date, as the swap rate formula in equation (5) 

implies, and not how those expectations might change over time. The Hull-White one-factor model 

is able to simulate different term structures, and thus different market expectations, so using it to 

model CVA is more appropriate. Even better, using a swaption price calculated under the Hull-White 

model takes all the expectations into one neat number, since a swaption price is an expectation of 

discounted future swap rates at a certain date (defining the future swap rate as a random variable) 

as implied by equation (10) below. 

 

'���a��3/ = 	,�.	#. nPop����	, .),(�) q 

 

Note that Figure 3-5 also shows the importance of calibrating the model, since Japanese interest 

rates, for example, shows considerably different behaviour from German and French interest rates. 
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4 Research methodology 

In this chapter, the process followed in obtaining the results in the next chapter will be outlined from 

a practical perspective. This will include rationale behind the decision on the models used, how the 

data required was obtained and processed, calibration of each model, and finally how the results 

were calculated. 

4.1 Models 

For the pricing of European swaptions, Black’s Forward Rate model was be used because of its 

popularity in pricing interest rate derivatives (Hull, 2012, p.664), and its simplicity. The downside of 

Black’s model, however, is that it does not provide a description of how interest rates evolve 

through time (Hull, 2012, p.682). Therefore each swaption was calculated using Hull-White’s model 

as well. An analysis of the differencing in CVA under the two models will then be possible in section 

5, the results section.   

4.2 Data 

For the calculation of CVA using the swaption approach, it was assumed that loss given default (LGD) 

was equal to one (i.e. recovery rate equal to zero). Data collected for the CVA calculations included a 

matrix of swaption implied volatilities and swap rates for the relevant dates. The dates that the data 

was relevant for are 20, 21 and 27 February 2014, 26 March 2014, and 19 June 2014. The spacing of 

the dates is specifically to illustrate how the CVA and EE profile evolve over long and short periods.  

Unfortunately, a zero curve for the South African market could not be obtained. Instead, 3 month 

JIBAR rates up until 18 months were used, and for yields over longer periods than that, yields on 

coupon bearing government bonds, instead of zero coupon bonds, were directly used. This might 

cause the yield curve to be slightly too low, but it was thought that government bond yields would 

still provide a decent approximation as to how the zero curve would evolve through time.  

Observed market swap rates were obtained for each of the dates that CVA was assessed on. These 

were used to calculate CVA using the MtM approach. The exact method used for this calculation in 

given in section 4.6. Note that each of these swap rates were for swaps with a maturity of ten years. 

Each of the market swap rates obtained for subsequent dates therefore described a swap with a 

different maturity date as the swap held. However, considering that the swap held had a maturity of 

10 years, and the greatest difference in maturity dates from the original swap was about a third of a 

year, these differences were not considered to be problematic. It was considered to be the best 

approximation to market swap rates for the swap held. The alternative was to use the term 

structure to obtain a market rate which would not have been entirely accurate either. This is 

because the term structure was not a true zero curve, as explained above. 

The data mentioned here was obtained from Rand Merchant Bank (2014).  

4.3 Calibration 

Firstly, the Hull-White model was calibrated to the South African market. This included using the 

techniques discussed in section 2.4.6, on model calibration. Black’s model was calibrated by using 

volatilities in the implied volatility matrix, and interpolating where necessary. Calibration is covered 

in more detail in sections 4.3.1 and 4.3.2. After the Hull-White one-factor and Black’s model were 
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calibrated, swaption prices relevant to the South African market could then be calculated to find 

appropriate values for CVA.  

For both models, an implied volatility matrix for at-the-money swaptions was used. An example of 

such a matrix is shown below 

 

Maturity  Tenor 

 3 Months 6 Months 1Y 4Y 10Y 20Y 

6 Months 0.25 0.23 0.22 0.2 0.19 0.18 

1Y 0.25 0.24 0.23 0.21 0.20 0.19 

4Y 0.26 0.25 0.24 0.22 0.22 0.19 

10Y 0.24 0.24 0.23 0.215 0.23 0.2 

20Y 0.24 0.23 0.22 0.21 0.2 0.18 

Table 4-1: Example of Implied volatility matrix for at-the-money swaptions used for calibration 

Note in the table above that maturity dates for the swaptions are listed in the left-hand column, 

while tenors (or swap lifetimes) for each underlying swap are listed in the row on top of the 

highlighted matrix. The intersection of the second row and fourth column in the matrix, for example, 

gives the implied volatility for a swaption with a maturity of one year and a tenor of four years. 

4.3.1 Hull-White model 

The parameters � and � were estimated using the methods described in section 2.4.6, using a least 

squares optimisation function provided by the scipy package (an add-on to the Python language). 

Initial guesses for � and � were first obtained by using methods 1 and 2, then method 3 was applied 

to find estimates for � and � simultaneously.  

Note that only implied volatilities for co-terminal swaptions to the swaptions to be valued 

(benchmark swaptions) were used. Co-terminal swaptions have swaps that have the same maturity 

date, as underlying, that is, the sum of the maturity and tenor (from the matrix) are the same. 

Swaptions were included if they differed by less than 30% of the time from the present to the 

terminal date (date of last payment) of the benchmark swaptions. As an example, if the benchmark 

swaptions had its terminal date 10 years from the present, implied volatilities of swaptions with 

terminal dates between 7 and 13 from the present were had a weight of 1 in equation (33). The rest 

had a weight of zero.  

Calibrating the model with this methodology was computationally intensive, but provided the model 

that was the most accurate reflection of the real-world interest rate environment. The code used for 

the calibration is in Appendix C. 

4.3.2 Black’s model 

Implied volatilities are generally obtained by inverting Black’s model to market swaption prices. 

Calibration for Black’s model was therefore relatively simple.  

If a swaption to be valued  matched an existing tenor and maturity in the implied volatility matrix, 

that exact volatility would be used for the swaption. Where only one of the maturity or tenor of the 

swaption matched a value in the matrix, linear interpolation was used to find the missing value (in 

this case maturity) with the formula 
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R^�/�!Ga = R^(�E, É)(� 2 �j) + 	R^��j, É)(�E 2 �)�j 2 �E  

where 

• X®8@?: ¸ is the implied volatility that is to be interpolated 

• X®(
, Ê) is the implied volatility associated with date maturity date 
 and tenor Ê 

• 
 is the date that we are interpolating on (the date that is not in the matrix) with 
g < 
 < 
h 

the closest dates that we have maturities on in the matrix 

In the formula above, if we interpolated for tenor, we would have kept 
 constant, and interpolated 

for Ê. 

 Where neither maturity 
, with closest maturities 
g < 
 < 
h, nor tenor Ê with closest tenors Êg < Ê < Êh, could be found in the matrix, bilinear interpolation was implemented by first 

interpolating for maturity, for the two tenors either side of the desired tenor: 

���(E)�/�!Ga = 	R^�/�!Ga � R^��E, ÉE)(� 2 �j) + 	R^��j, ÉE)(�E 2 �)�j 2 �E  

���(j)�/�!Ga = 	R^�/�!Ga � R^��E, Éj)(� 2 �j) + 	R^��j, Éj)(�E 2 �)�j 2 �E  

Where 

• ¬�
(g)8@?: ¸ is the value of the implied volatility for the maturity interpolated for tenor Êg 

• ¬�
(h)8@?: ¸ is the value of the implied volatility for the maturity interpolated for tenor Êh 

The required implied volatility was then interpolated as 

R^�/�!Ga = ���(E)�/�!Ga(Éj 2 É) + ���(j)�/�!Ga(É 2 ÉE)Éj 2 ÉE 	 
 

It must be noted that the calculated volatility for Black’s model using this method is time-dependent, 

since a different value for sigma is calculated for each increment in time. 

4.4 Calculation of EE and CVA 

In the calculation of the EE profile, two approaches were followed, namely using the Hull-White and 

Black’s model. In both approaches, a year was assumed to contain 250 (business) days. In the 

absence of any collateral (the first approach), EE was calculated on a weekly basis, regardless of cash 

flow frequency. This meant that every 5 business days EE was calculated, so a total of 50 swaptions 

were valued in a year. Although this sacrificed a small amount of accuracy in the calculation, it was 

well worth the reduction in time required to calculate EE values for each business day. To illustrate, 

consider the CVA values and time required for the calculation of a 20 year swap under the following 

circumstances 
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Model Frequency Time (seconds) CVA % difference in 

CVA 

Black Daily 173.17 126.08 
0.238 

 Weekly 34.17 125.78 

Hull-White Daily 326.51 64.82 
0.108 

 Weekly 66.76 64.75 

Table 4-2: Comparison of calculation speeds for daily and weekly frequencies 

It can be seen from the results above that calculating CVA based on EE values spaced 1 week apart 

instead of daily EE values brings massive benefits in terms of speed of calculation, while sacrificing 

very little in terms of accuracy, less than 0.3% of the more accurate (daily) calculation, in fact.  

After all the EE values were calculated, CVA was calculated by using equation (7). The integral was 

approximated by the following numerical integration algorithm: 

C(�� 2 ��fE)/
�HE

##(��) + ##(��fE)j 	 
The exact code used for this algorithm can be found in Appendix C. 

 

4.5 Calculation of CVA DV01 

Finally, a DV01 measure for CVA was also calculated. In the case of the Hull-White model, for each 

bond, this was calculated by measuring the change in the bond’s value for a very small drop in bond 

yield. In this way, a derivative w.r.t. a basis point shift in the zero curve was estimated by modifying 

the forward difference, defined in section 2.3.4. For Black’s model, a simpler method was used. 

4.5.1 Hull-White model 

The formula for the delta of a payer swaption was given in section 2.3.7 as 

2 �'()(., �, ��)��(¤a) = 	C"�-�2�∗ 2 ��	 ���., ��)��(¤a)
/

�H.  

 

(27) 

Since equation (27) is only for an ordinary European swaption, it needs to be modified to work on a 

tail swaption. Therefore equation (27) becomes 

2 �'()	���%�., �, ��)��(¤a)= 	2 ���., ., �.)��(¤a) -(2�∗∗ + 	�$ 2 	�	�p�u��$ 2	�$jw			
+ 	���., ., �)��(¤a) -(2�∗∗) + 
(� 2 �.) ��(., ., �E)��(¤a) -(2�∗∗ 2 �)
2 	�'()∗ �., �, ��)��(¤a)  

 

(46) 
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where 2 �'()∗ (.,�,��)��(¤a)  is equation (27), except that �∗ gets replaced by �∗∗, which was defined in 

section 2.3.2. 

Since the formula for collateral agreements also contains the formula for no collateral agreements 

(under a tail swaption) we will work here exclusively with that formula, obtaining the DV01 formula 

for EE under no collateral in the process. The formula for EE under collateral agreements is given by 

'"3%%��!G�% = '()	���% 2 '()	���%∗∗ 	+ 	(-�2�∗∗	 
 

(25) 

 

so it follows that 

�'"3%%��!G�%��(¤a) = �'()	���%���¤a	 2 �'()	���%∗∗���¤a	  

where 2 �'()	���%∗∗
���¤a	   is equation (46), except that �∗∗ gets replaced by �∗∗∗, as defined in section 2.3.3. 

 In order to calculate 
�'()	���%���¤a	   and  

�'()	���%∗∗
���¤a	 , a numerical approximation was used. From section 

2.3.5, we use  

1410 �.. ...E	 � �^.E � 4�0. + 	�	 2 	4�0.	� �.. ...E	 
 

(29) 

 

more specifically, 

��(., ��)��(¤a) ≈ 2 ��(., ��)��(�) (.. ...E) = �^.E = ��(0.mmm + �) 2 	���0.mmm	� �.. ...E	 
where 

• �?(W�mmm) is the price of a discount bond maturing at time 
, given a vector that represents zero 

curve rates W�mmm 

• ℎ is a very small number, e.g. 10fË 

Therefore in the algorithm used to calculate this, the difference between two zero-coupon bonds, 

one on a zero curve with rates decreased by ℎ, and the other on the original zero curve, was 

calculated then divided by ℎ, then multiplied by 0.0001 to get the change in price for a basis point.  

After 
��(.,��)��(¤a)  has been approximated, it will be used to calculate 

�'()	���%���¤a	  ,  
�'()	���%∗∗
���¤a	  and also 

�'"3%%��!G�%��(¤a) .  

For a receiver swaption, the same methodology is followed, except that we start with equation (28) 

instead of equation (27). 

The exact code used for this algorithm can be found in Appendix C. 

4.5.2 Black’s model 

The DV01 for a swaption calculated under Black’s model was computed by a simpler numerical 

method. Since DV01 is the change in price for a basis point increase for all interest rates (see section 

1.3), the DV01 could be approximated by 
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�'*��(¤a) ≈ ('i 2 'f)/j 

Where \i and \f are the swaption prices for an upward and downward shift in the yield curve, 

respectively. The downside of this algorithm is that the swaption price is calculated twice for each 

date required, instead of once for each date as in the Hull-White DV01 case. On the other hand, 

since the algorithm for calculating a swaption price under Black’s model is computationally less 

demanding than under the Hull-White model, this should not pose a significant problem.  

The code for this algorithm is also in Appendix C. 

4.5.3 Obtaining CVA DV01 

When the DV01 for each swaption has been found, as shown in the previous two subsections, CVA 

DV01 is found by integrating as in section 4.4, except that EE values are replaced by their respective 

swaption DV01 values. This is done in the same way for each model. 

 

4.6 Calculation of swap market values 

For the purposes of comparing CVA obtained under the semi-analytical approach with values 

obtained using the MtM approach, market swap values were calculated by assuming that the market 

swap rate on any date complied with equation (5): 

�(0, 0, 5) = 	 1 2 ��0,0, 5)∑ �(0,0, ÍÎ)ℎÎ@8Hg  (5) 

 

This implies that */!�	��0!1 �	*/!�	�%3���/4 in 

�/!�(., ., /) 	� 	*/!�	��0!1 2	*/!�	�%3���/4 (1) 

where a newly issued swap, �/!�(., ., /) = ., since we are assuming the observed market swap 

rates are such that  the swap value is zero at inception. Since */!�	�%3���/4 � *�%3���/4  in the newly 

issued swap and the swap currently held,  

�(., ., /) 	� 	*��0!1 2	*�%3���/4 

We have  

��., ., /) = 	*��0!1 2	*/!�	��0!1 

With the assumptions made, we can therefore calculate the market swap value as 

�(., ., /) = _(.)(���0!1 2 �/!�	��0!1	 
where	�789:;  and �@:·	789:; are the swap rates for the swap currently held and the observed market 

swap rate, respectively. 
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5 Results 

The first section of the results will deal with each of the models themselves and how they react to 

different inputs, specifically term structures, parameters, collateral and netting agreements. 

Explanations for how the models react to inputs will be given where possible. Fictional term 

structures were used in the first section, and no implied volatility matrices were used so that inputs 

could be controlled better. The following simple term structures, labelled term structures 1, 2 and 3, 

in order from left to right, will be used: 

 

Figure 5-1: Term structures 1, 2, and 3. Each term structure will show the effect that a rising, flat 

and declining term structure has on the EE profile 

Each time, EE and CVA were calculated for a portfolio of one swap only, with a maturity of 10 years 

and a notional value of R100 000. Payments are semi-annual for both legs of the swap. The single 

swap was used so that the effects of netting would not affect the results. Netting was handled 

separately. Where factors other than the term structures were tested, the rising term structure was 

always used for consistency. The effect of term structure was only tested under Black’s model, since 

it was thought that it would have the same effect under both models. In Black’s case, where 

volatility was not explicitly tested, 15% volatility was used. Note that in every case given in section 

5.1 and 5.2, the market value for the underlying swap was zero. 

Note that CVA values calculated in sections 5.1 and 5.2 under the different models should not be 

compared. Only in section 5.3, where both models were calibrated to the same market data, were 

CVA and exposure profiles compared. 
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Payer swap 

Term structure CVA CVA DV01 

Rising 6 518.40 17.81 

Flat 2 461.16 15.95 

Falling 1 337.50 10.29 

Table 5-4: Numerical results for the term structure effects in Table 5-3 in the case of a payer swap 

 

Receiver swap 

Term structure CVA CVA DV01 

Rising 1 126.56 -8.27 

Flat 2 461.18 -16.22 

Falling 4 333.18 -19.83 

Table 5-5: Numerical results for the term structure effects in Table 5-3 in the case of a receiver 

swap 

 

Exposures were plotted on different sets of axes this time, since the different profiles for different 

term structures overlapped considerably. In order from top to bottom, the table on the previous 

page lists payer and receiver swap exposure profiles for a rising, flat and falling term structure. The 

payer swap profile leans to the right in a rising term structure environment, and slants gradually to 

the left and falls as the term structure becomes declining. The opposite is true for receiver swaps. 

The profile of a payer swap in a rising interest rate environment is very similar to the profile of a 

receiver swap in a falling interest rate environment, and vice versa.  

CVA values for a payer swap decreased as the term structure became more downward sloping, while 

at the same time increasing for a receiver swap. This can be understood by considering the concept 

of net present value (NPV). If the term structure is upward sloping, the swap rate for the first portion 

of the swap is more than the forward rates. This means that parties expect that the party holding the 

payer swap will have negative cash flows for the first portion of the swap and positive cash flows for 

the second portion. The party holding the payer swap therefore expects to get compensated later 

during the second portion of the swap. That party carries the exposure on average, since if the other 

party defaults, that party will not get compensated. As the term structure becomes more downward 

sloping, this effect diminishes. 

If a change in the term structure shape is the cause of the change in CVA, CVA DV01 values imply 

that exposure to interest rate movements increases with CVA. 

On a side note, the graphs on the previous page illustrate the adjustment made for payments lost 

during the default period (see sections 2.2.2, 2.3.2 and 2.4.2). The green line in each graph represent 

an ordinary European swaption, maturing at that time with an underlying swap maturing 10 years 

from the present time, while each of the jagged blue lines represent the “tail swap” after making the 

adjustment described in section 2.2.2. Under lower volatilities, the first adjustments are still negative 

in the payer swap case, reflecting the negative cash flows in the first portion of the swap contract in 
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CVA values for the counterparty (receiver swap) are shown in Table 5-22 below. CVA values for the 

counterparty is larger than CVA for the party holding the payer swap, which corresponds to market 

values on the last three dates. It is interesting to note that as market values indicate increasingly 

that the counterparty carries the most credit risk with passing time, CVA correspondingly increases 

for the counterparty and decreases for the party holding the payer swap. This widened the gap 

between CVA values further (see section 25 for the relationship between CVA and counterparty 

CVA).  

 

 

 

 

 

 

 

 

 

 

 

 

Date CVA CVA DV01 MtM 

20/02/2014 3 035.06 14.96 0.00 

21/02/2014 2 988.63 14.78 67.57 

27/02/2014 2 841.78 14.25 -475.50 

26/03/2014 2 711.26 13.56 -1770.24 

19/06/2014 2 378.64 12.17 -3247.10 

Table 5-21: Numerical results for Black’s model under no collateral agreements 

Date CVA CVA DV01 MtM 

20/02/2014 3 186.79 -17.05 0.00 

21/02/2014 3 275.64 -17.36 -67.57 

27/02/2014 3 474.13 -18.26 475.50 

26/03/2014 3 744.61 -19.08 1 770.24 

19/06/2014 3 746.41 -19.86 3 247.10 

Table 5-22: Numerical results for counterparty CVA under Black’s model 
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In the first case, the swap rate dropped by 8 basis points in less than a week, while the mean 

reversion rate also fell, which presumably was not offset in full by the small decline in sigma at the 

same time. The second decrease can be attributed to the large time gap (about 11 to 12 weeks), as 

well as the less steep decline in market swap rates than in the first case. 

CVA values for the counterparty are shown in Table 5-24 below. Clearly, CVA values for the 

counterparty are larger than CVA for the party holding the payer swap. This is in accordance with 

market values for the last three dates, which implies that the counterparty carries the credit risk. 

While under Black’s model CVA for the counterparty increased monotonically as time went on, CVA 

for the counterparty under the Hull-White model decreased again on the last date. This could be due 

to the Hull-White model’s more complex parameterisation and its time independent parameters. 

 

5.3.1.3 Comparison of the two models 

The shapes of the two models’ EE profiles are slightly different. This could be explained by the fact 

that Black’s model was used with time-varying volatilities, while under the Hull-White model, 

parameters were constant for a given profile. Another apparent difference is that the EE profile 

under the Hull-White model for the last date is even more significantly lower than the other profiles, 

than under Black’s model. Once again, this could be explained by the constant parameters of the 

Hull-White model, as opposed to time-varying volatility under Black’s model. Another explanation 

for both of those differences though, is the fact that the Hull-White model has one more parameter 

than Black’s model. 

CVA values from Table 5-23 and Table 5-21 show that CVA values for the two models can differ quite 

substantially in some cases. These differences become especially large for the last two dates. Since 

the CVA is calculated from the EE profile, the explanation for these differences is the same as above. 

 

 

 

 

 

 

Date CVA CVA DV01 MtM 

Calibrated model 

parameters 

a sigma 

20/02/2014 3 102.16 -18.85 0.00 10.61% 2.29% 

21/02/2014 3 195.54 -19.21 -67.57 9.15% 2.17% 

27/02/2014 3 399.56 -20.27 475.50 8.33% 2.08% 

26/03/2014 3 614.37 -21.10 1770.24 5.60% 1.85% 

19/06/2014 3 472.04 -21.59 3247.10 -2.31% 1.17% 

Table 5-24: Numerical results for counterparty CVA with no collateral under Hull-White model 
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Numerical results are shown in Table 5-25 above. There was no significant trend in implied volatility 

over the time of those dates listed above. The decline in CVA can therefore best be explained by the 

lowering market swap rates and the decline in remaining life of the swap as time progresses. 

In Table 5-26 below, CVA values for the counterparty are shown. Once again, counterparty CVA 

exceeds CVA of the party we are analysing, corresponding with market values indicating that the 

counterparty carries the larger risk. 

 

 

 

 

 

 

 

 

 

 

 

Date CVA CVA DV01 MtM 

20/02/2014 271.87 1.01 0.00 

21/02/2014 267.24 1.00 67.57 

27/02/2014 257.08 0.98 -475.50 

26/03/2014 244.26 0.92 -1000.00 

19/06/2014 224.61 0.91 -1000.00 

Table 5-25: Numerical results for CVA obtained under Black’s model for a 

collateralised swap contract 

 

Date CVA CVA DV01 MtM 

20/02/2014 387.36 -1.36 0.00 

21/02/2014 392.73 -1.35 -67.57 

27/02/2014 407.46 -1.32 475.50 

26/03/2014 421.95 -1.26 1000.00 

19/06/2014 432.21 -1.25 1000.00 

Table 5-26: Numerical results for counterparty CVA for collateralised swap under Black’s model 
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CVA values for the counterparty are shown in Table 5-28 above. Counterparty CVA increased 

monotonically under collateralisation, unlike the case for no collateral under Hull-White, but was still 

in accordance with market values for the swap contract. 

 

5.3.2.3 Comparison of the two models 

The overall shape of the EE profiles under the two models was very similar. However, this could be 

misleading because of the way the profiles converge in both cases. 

Table 5-25 and Table 5-27 show even larger differences in CVA for the two models under a collateral 

agreement. These differences are seen on all the dates, and are especially large when considering 

the percentage of the values that the differences are, e.g. the smallest difference is over 10% of CVA 

value, while the largest is well over 20% of CVA value. These differences could be attributed to the 

Hull-White model having an extra parameter for describing interest rate evolution and time 

independent parameters while the Black’s model parameter varies with time. 

 

 

 

 

 

 

 

 

 

 

Date CVA CVA DV01 MtM 

Calibrated model 

parameters 

a sigma 

20/02/2014 327.52 -1.27 0.00 10.61% 2.29% 

21/02/2014 329.28 -1.26 -67.57 9.15% 2.17% 

27/02/2014 345.41 -1.22 475.50 8.33% 2.08% 

26/03/2014 360.76 -1.15 1000.00 5.60% 1.85% 

19/06/2014 378.56 -1.21 1000.00 -2.31% 1.17% 

Table 5-28: Numerical results for counterparty CVA with collateral under Hull-White model 
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6 Conclusion 

Since there were quite a few research objectives in this paper, conclusions on each will be made in a 

case-by-case fashion here. Possible areas for future research will be listed afterwards. 

Firstly, the comparison of the swaption approach versus the simplistic mark-to-market approach 

showed that the mark-to-market approach did in most cases indicate which party carried the most 

credit risk. However, the simplistic approach gives us far less information on the credit risk involved 

between the two parties. One of the major shortcomings of the simplistic approach is that the risk 

cannot be divided to see how it is distributed across the two parties involved in the contract. Since 

CVA can be calculated for each party, the swaption approach provides a means to obtain this 

distribution of risk. Another shortcoming of the simplistic approach is that no exposure profile can 

be calculated from it. Exposure profiles provide an excellent means to ascertain what the average 

risk will be for each date in the future, and the swaption approach readily provides the means to 

obtain such profiles. 

The DV01 measure was relatively easy to calculate in each case. Since this measure effectively gave 

an approximation to the exposure of CVA itself to interest rate risk, it could allow parties to hedge 

against any adverse changes in CVA. 

It was very clear that having a collateral agreement on the swap contract reduced credit risk 

considerably. The extent of this effect depends naturally on the threshold, since it was shown that 

exposure under collateral agreements never climb above the threshold amount. 

Because of time constraints and the need to limit the size of this paper, netting could only be 

considered in very simple and almost unrealistic cases. The results from netting were not very 

revealing. All that could be concluded from netting results was that large drops and jumps in 

exposure could be expected when a swap matures and when a swap is entered into, respectively. 

This does not include offsetting swaps. 

Model parameters were shown to have a very large impact on CVA and EE profiles. Since model 

parameters are a reflection of market conditions regarding interest rates and swap rates, 

understanding the effects of model parameters on CVA will allow parties to take appropriate action 

when certain market conditions are expected in the near future. 

A comparison of CVA values under the two models revealed some significant differences, especially 

when tested under collateral agreements. This could provide motivation for using the Hull-White 

model instead of Black’s model, since academic literature explicitly recommends term structure 

models for CVA calculation when using the semi-analytical approach. However, since Black’s model 

had a time dependent parameter, while the Hull-White model’s parameters were time independent, 

this may be slightly misleading. 

Exposures and CVA calculated under Black’s model and the Hull-White model showed similar 

patterns when calculated on SA data, but the levels of CVA often differed slightly. This could be 

attributed to the fact that time-varying volatility was used under Black’s model, calculated from the 

implied volatility matrix on each date, as opposed to constant parameters under Hull-White. It could 

also be attributed to the fact that the Hull-White model has an extra parameter with which it can 

characterise interest rates. Because the Hull-White model provides information on how interest 
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rates evolve through time, while Black’s model does not, it could be that the Hull-White model takes 

account of something that Black’s model does not. While investigating the effect of volatility on CVA 

under collateral agreements, CVA had certain “optimal” values under the Hull-White model. This 

was not observed under Black’s model, even when testing volatility for a wide range of values. 

The calibration method used was a very thorough one, although costly in terms of processing power 

required. It was taken in favour of simpler calibration methods so that the amount that differences 

in models could be attributed to inefficient calibration could be minimised. 

6.1 Areas earmarked for future research 

There were plenty of questions left unanswered, due to limitations regarding time and the size of 

this paper. Those questions are listed here. 

In this paper, the assumptions made for netting agreements were very limiting. Future research 

areas could be to investigate possible methods for calculating CVA under more complex netting 

agreements, such as allowing for different swap rates in the portfolio. 

Some simplifying assumptions were also made regarding collateral agreements, mainly disregarding 

different periods for the posted amount and the current swap rate. Other factors such as the grace 

period and independent amount were also disregarded. The inclusion of these factors requires that 

the formulas for CVA under collateral agreements get more complex, and is therefore a potential 

area for further research. 

Swap rates were not marked to market regularly as time went on. As this is an available risk 

management technique for swaps, the analysis was not as complete as it could have been. Also, 

swap market values are calculated differently under collateral agreements. This was not done due to 

the same limitations mentioned, and so the comparison of CVA under collateral agreements with the 

mark-to-market method was not entirely accurate. 

It was realised that the two parameters of the Hull-White model might be subject to interaction 

effects, e.g. the � parameter might have a different effect on CVA for different values of sigma. This 

requires a more rigorous and in-depth study than was done in this paper on these interaction effects 

alone. 

It was mentioned in the conclusion that because the Hull-White model had time independent 

parameters while Black’s model had a time dependent parameter, the comparison of the two 

models may have been slightly misleading. A future study where the Hull-White model has time-

dependent parameters also, might provide a more accurate comparison of CVA calculation under 

the two models. 
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7 Appendices 

 

Appendix A - Proofs 

These proofs  are adapted from Bateson (2011:306-312). All variables have the same definitions as 

described in the literature review (chapter 2), unless stated otherwise. 

Hull-White One-Factor Model 

The Hull-White One-Factor model describes the change in the short rate, M(
), as  

1G(�) = �v(�) 2 	�G��	]1� + 	x1y��	 (A.1) 

 

Where 

• � is the mean reversion parameter 

• � is the volatility parameter 

Using the method of integrating factors on (A.1), we obtain 

M(
) = 	M�0	cf>? +	cf>?` }�Ê	c>Ï¥Ê?
� + 	�cf>?` c>Ï¥Ð?

�  

From this, the expectation and variance of the spot rate are given by  

V�M�
	] � 	M�0	cf>? +	cf>?` }�
	c>Ï¥Ê?
�  

®�M�
	] � �h2� �1 2 cfh>?] 
From which an analytical form for }�
	 can be obtained 

}�
	 � 	ÒK�0, 
)Ò
 + 	�K�0, 
) + �h2� (1 2 cfh>?) 

which can be approximated by 

ÒK(0, 
)Ò
 + 	�K�0, 
) 

 

Substituting back into (A.1), we can approximate the spot rate drift as 

ÒK(0, 
)Ò
 + 	��K�0, 
) 2 	M] 
which shows us that mean reversion gets bigger, or stronger, as the difference between the spot and 

forward rate increases.  
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In a similar fashion to the Black-Scholes model, a PDE for the Hull-White model can also be obtained. 

It is given by 

�^�G, �)�� + Ej xj �j^(G, �)�Gj + 	 �v��	 2 	�G	 �^�G, �)�G 2 	G^�G, �) = 	. (A.2) 

The price of a discount bond as seen at time r, at time t, that matures at time T with a payoff of one 

unit of currency, can be obtained from (A.2) and is given by 

�(G, �, �) = 	_��, �)!f*(�,�)G(�) (A.3) 

 

where 

• 6(
, �) = gf:«Ó(Ô«Õ)
>  

• U5½(
, �) = ln ³�(�,�)�(�,?)´ + 	6�
, �)K(0, 
) 2 gØ>Ù �h(cf>� 2 cf>?)(ch>? 2 	1		 
Since the spot rate M�
	 follows a normal process, we can deduce from (A.3) that the discount bond 

price �(M, 
, �) follows a log normal process. The following useful result was used for obtaining 

closed form solutions for the various versions of swaptions under the Hull-White one-factor model in 

this paper 

�(�, �, �) = �(., �, �)�(., �, �) !fEj�j(�,�,�)f	���,�,�)�
 

 

(A.4) 

 

�(
, �, �), the volatility of the discount bond, is given by 

�j(�, �, �) = 	 xj �E 2 !���f�	� � nE 2 !fj���f�	j� 	q 
 

(A.5) 

 

 

Proof of the swaption pricing formula under the Hull-White model: 

In the following sections, assume that all swaps and swaptions have the same characteristics as 

those in sections 2.3 and 2.4 

 

 

Some Preliminaries 

In Bateson (2011:23) the forward rate as seen at time t, between times T and T + h, is defined as 

�(�, �, � + �) = E� � �(�, �)�(�, � + �) 2 E� 

 

(A.6) 
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Bateson (2011:26-27) defines a floating rate note as an instrument that pays a floating rate coupon K at the end of each period of length ℎ. The present value of the floating rate note is given by the 

present value of all future floating rate payments plus the principal at maturity 

'B -(., �) = 	C��., �� + 	�	��	� + ��., �)-
�  

 

(A.7) 

 

By substituting (A.6) into the above equation, we can show that (A.7) is always equal to 1, as shown 

below  

'B -(., �) = 	C��., �� + 	�	��	� + ��., �)-
�
= 	C��., �� + 	�	 E�� ��., ��)�(., �� + �) 2 E� 	� + ��., �)-

�
= 	Cu��., ��) 2 �(., �� + 	�	w + ��., �) = 	��., �.) = �(., .) = E-

�  

Bateson also defines the value of an interest rate swap as the difference between the present value 

of the difference between the floating and fixed payments. In the case of a payer swap (pay fixed, 

receive floating), the value is defined as 

�(0,0, �) = 	\®	JUT�
�5¦	�c¦ 2 \®	J�Wc¥	�c¦ � 	C�u0,0, 
� + 	I�wK�I� 2	Ú
� C��0,0, 
8)�U8

�
8  

where 

• U8 is the length of the period in which the i-th coupon payment takes place 

• ℎ8 is the length of the period in which the i-th floating rate payment takes place 

In this paper, all coupon periods and floating rate periods were assumed to have the same length 

period, so then ®¶·>¸(0, �) simplifies to  

^���a(., �) = 	'^	B%3���/4	�!4 2 '^	B�0!1	�!4
� 	C�u., �� + 	�w��� 2	-

� C��., ��)�. ��
�  

 

(A.8) 

 

Upon entering into the swap, the swap rate, �, is set such that ®¶·>¸(0, �) = 0, therefore 

C �u0, 
� + 	IwK�I	Ú
� 	� 	C��0, 
8)�. ℎ�

8  
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→ 			��0, 0, �) = ∑ �u0, 
� + 	IwK�I	Ú� ∑ ��0, 
8)ℎ�8  

 

Since the numerator of this equation for C is equal to the value for a floating rate note minus the last 

term, and it was already proven that a floating rate note’s price upon entering into the contract is 

equal to 1 (assuming the principal is 1), the formula for C becomes 

	��., ., �) = E 2 �(., �)∑ �(., ��)���  

which proves equation (5). Note that � gives the swap rate for an IRS starting at time 0 (the present) 

and matures at time T. For this reason, it will be more convenient to express equation (5) as  

�(., ., �) = 	 E 2 ��., ., �)∑ �(., ., ��)���  

or more generally, 

													���, �, �) = 	 E 2 ���, �, �)∑ �(�, �, ��)���  

 

(A.9) 

which is the formula for the swap rate observed at time t, for an IRS starting at time s and maturing 

at time T. 

Note that from here on,	�?	will be an alternative notation for ��
, �, ��), the swap rate observed at 

time t, for a swap that starts at time � and ends at time ��. �?,Ü will be an alternative notation for �(
, �, ��)Ü, the value of a swap with swap rate � as observed at time 
 

Swaption Formula Derivation: 

The price of a swaption is generally given by formula (10) 

\ÝÞ(0, �, ��) = 	r�0	V� nmax����, �, ��), 0)r(�) q 

Since our chosen numeraire is the zero coupon discount bond, the current, time 0 price of a 

European swaption expiring at time T on an IRS maturing at time ��, is derived from the above 

formula as 

\ÝÞ(0, �, ��) = 	 V�â��., ., �)maxu�?,Ü , 0wã 

→ 	 \ÝÞ�0, �, ��) = 	 �V� ²��., ., �)max( �(�, �, ��) 2 	
, .) C �(�, ��)���

���� µ	 
Substituting for Z��, �, ��) from equation (A.9) we have 
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\ÝÞ(0, �, ��) = 	 �	��., ., �)V� ²max(E 2 �(., �, ��) 2 	
 C ��., �, ��)���

���� , .)µ 

 

(A.10) 

 

Since each of the discount bonds in the above equation is stochastic, each depending on a standard 

normal random variable, as shown in equation (A.4), rewriting each discount bond as a function of a 

specific standard normal value, Z is convenient 

�(., �, �) = �(., �)�(., �) !fEj�(.,�,�)f	��.,�,�)� = 	���, �, �) 

From Equation (A.10), it is clear that the option is exercised for  

E 2 �(., �, ��) > 	� C ��., �, ��)���

����  

or alternatively, all values of �	~	��0, 1) such that 

E 2 	���, ��, �) > 	� C ���, ��, �)���

����  

 

(A.11) 

Therefore we have to find �∗ such that 

E 2 	���, ��, �∗) = 	
 C ���, ��, �∗)���

����  

From (A.4), it is clear that å(�, �) is a decreasing function of �, therefore the left hand side of the 

equation above is an increasing function of �∗, while the right and side is a decreasing function. It is 

clear then that (A.11) is satisfied for all values of � > �∗. Since the expectation in (A.10) is an 

integral, we integrate over all values of � > �∗, therefore we have from (A.10) 

'()(., �, ��) = 	��., ., �) ` �E 2 �(., �, ��) 2 	
 C ��., �, ��)���

���� � æ(�)1�ç
�∗  

 

where 

• æ(�) is the standard normal density function evaluated at � 

Substituting for the discount bond formulas, then simplifying, we obtain 
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'()(., �, ��) = 	��., ., �) ` æ(�)1� 2 �(., ., ��) ` æ(�)!fEj�j(.,�,��)f	��.,�,��)�1�ç
�∗

ç
�∗

2 	
� C ��., ., ��)�(., ., �) ` æ(�)!fEj�j(.,�,��)f	��.,�,��)�ç
�∗	

��
����

1� 

Now, the first integral will reduce to �(2�∗). The second integral, after making the substitution �(g) = 2� 2 �(0, �, ��)	, will reduce to ��2�∗ 2 	��0, �, ��)). The third set of integrals, after 

making the substitution �(g) = 	2� 2 ��0, �, 
8), will reduce to the form �(2�∗ 2 	��0, �, 
8)). 

Making these substitutions, and letting �(0, �, ��) = �� and �(0, �, 
8) = 	 �8 the price of a 

European payer swaption will therefore be 

'()�., �, ��) = 			����., ., �)-(2�∗) 2 	��., ., ��)-(2�∗ 2 	��	
2 		
C ��., ., ��)��-(2�∗ 2 	��	��

����
	 

proving equation (15).  

For a receiver swaption, the same argument is followed, except that (A.10) becomes 

 ()(., �, ��) = 	 �	��., ., �)#. ²Pop(
 C �(., �, ��)���

���� 2 	E + ��., �, ��), .)µ 

because the buyer of the swaption will now be entering into a receiver IRS. From this, the condition 

for exercise will now be 

E 2 	���, ��, �) > 	� C ���, ��, �)���

����  

but the value of �∗ will still be the same, if all the characteristics of the receiver swaption is the same 

as that of the payer swaption. We will therefore integrate for all values of � < �∗. Following the 

same integration steps as above, we obtain 

 ()	���a��3/�., �, ��)= 			��2��., ., �)-(�∗) + 	��., ., ��)-(�∗ + 	��	
+ 		
C ��., ., ��)��-(�∗ + 	��	��

����
	 

proving equation (16). 
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Option to enter into tail swap 

From equation (12),   \¶·>¸?8=@ = 	r�0	 èÎéºu���	ÕÓ�êi	ëÔ,ì,�wí(î) ï	, we obtain the integral in the same 

fashion as in the short proof for the European Swaption 

	'()	���%�., �, ��) 

= �. �(., ., �) ` �����%(	�	� + 	E 2 ��., �, ��) 2 	
 C ��., �, ��)���

���� � æ(�)1�ç
�∗∗  

 

 

 

 

(A.12) 

 

except that the boundary condition for exercise has now changed to equation (24). 

 

For simplicity, we will divide the previous formula up, which is made possible by the linearity 

property of integrals 

'()	���%�., �, ��) = �(., ., �) ` ����%(�)æ(�)1�ç
�∗∗

+ �. �(., ., �) ` �E 2 �(., �, ��) 2 	
 C ��., �, ��)���

���� � æ(�)1�ç
�∗∗  

 

Therefore, 

'()	���%�., �, ��) = ��(., ., �) ` �(�)���%æ(�)1� + '(., �, ��)()∗ç
�∗∗  

Where '(., �, ��)()∗  is the formula for a payer swaption, given by equation (15), but with one key 

difference: the boundary of the integral,  �∗∗, will be different from the case of a normal swaption, 

since the boundary condition for exercise is now equation (24) instead of equation (20). 

Since 

Ä&oO¾(�) = � Á �(., �, �E)�(., �., �E) 2 	E 2 	
�� 2 �.	��., �, �E)Â 

 

from equation (9), and 

�(., �, �) = 	��., ., �)�(., ., �) �p�	�2 Ej�j�., �, �) 2 	��., �, �)�) 
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we substitute into equation (A.12) to obtain 

'()	���%�., �, ��)
= 	��., ., �) ` ��(., ., �.)�(., ., �) �p � �2 Ej (�j(�, �E)ç

�∗∗
2 	�j��Emmmm, �E)	–			����, �E) 2 	���Emmmm, �E))�)� 	2 	E
2 	
�� 2 �.	��., ., �E)�(., ., �) �p�	�2 Ej�j�., �, �E) 2 	��., �	, �E)�)� æ(�)1�
+ '(., �, ��)()∗ 		 

 

→ 	 '()	���%�., �, ��)
= �(., ., �.) ` �p� �2 Ej (�j(�, �E)ç

�∗∗
2 	�j��., �E)	–			����, �E) 2 	���., �E))�)� æ(�)1� 2 	��., ., �) ` æ(�)1�ç

�∗
2 	
�� 2 �.	��., ., �E) ` �p� Å2 Ej �j(., �, �E) 2 	��., �	, �E)�Æç

ð∗∗ æ(�)1�
+ '(., �, ��)���a��3/∗ 	 

 

Letting � = �(0, �, �g) and �̅ = �(0, ��, �g) , the first integral is solved by making the substitution �̅ = � + � 2 	 �̅, which reduces it to  ��2�∗ +	�̅ 2 	�	exp	���̅ 2	 �̅h	. The second integral reduces 

to ��2�∗	. The third integral, after making the substitution �̅ � 	� + �, reduces to ��2�∗ 2 �	. 
Substituting these values for the integrals into the above formula for the tail swaption, we obtain 

equation (22): 

 

'()	���%�., �, ��)= �(., ., �.)-(2�∗∗ + 	�$ 2 	�	�p�u��$ 2	�$jw 2 ��., ., �)-(2�∗∗)2 
(� 2 �.)�(., ., �E)-(2�∗∗ 2 �) + 	'�., �, ��)���a��3/∗  

 

For a an option on a receiver tail swap, we integrate for all values of � in the interval �2∞, 	�∗], 
instead of ��∗, ∞�, and define �(
) = 	��., �, ��) 2 	E + 	
∑ ��., �, ��)������� , which yields 

 ()	���%�., �, ��)= 2�(., �.)-(�∗ 2 	�$ + 	�	�p�u��$ 2	�$jw + ��., ., �)-(�∗)+ 
(� 2 �.)�(., ., �E)-(�∗ + �) + 	 �., �, ��)���a��3/∗ 		 
which is equation (23). 
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Adjusting for collateral 

Consider a payer swaption with regular collateral posting. Let the collateral threshold amount be 

defined by Y. Also, for simplicity, disregard the grace period and assume that collateral is posted on 

every date that EFE is calculated. Gibson (2005:6) suggests that EFE can be calculated by taking 

expectation of 

Vâmax	���̅,Ü 2 maxâ��̅,Ü 2 	Y, 0ã , 0)ã 

then remembering that �(
)mmmmmm = �(
) + 	�, we have rather 

Vâmax	���,Ü + 	� 2 maxâ��,Ü + 	� 2 Y, 0ã , 0ã 

Now to integrate this, with two Q�W functions, it needs to be observed that if ��,Ü + 	� > Y, then 

the above expression will reduce to  

V�Y] � ` Yæu��,Üw¥��,ÜëÔ,ìi	��Ý  

If  0 < ��
	 + 	� < Y, then since the inner Q�W function is now zero, we have 

Vâ��,Ü + 	�ã � 	` u��,Ü + 	���	?>8<wæu��,Üw¥��,Ü�ôëÔ,ìi	�ôÝ  

Finally, if ��,Ü + �(�)?>8< < 0, we have 

V�0� = 0 

Therefore, the entire function is non-zero as long as ��,Ü + 	���	?>8< > 0, so therefore the outer Q�W function will be integrated on all values for � where ��,Ü + 	���	?>8< > 0, and the inner Q�W 

function integrated on all values where ��,Ü + 	���	?>8< > Y, as follows: 

Vâmax	���,Ü + 	� 2 maxâ��,Ü + 	���	?>8< 2 Y, 0ã , 0ã
= 	` u��,Ü + 	���	?>8< 2maxâ��,Ü + 	���	?>8< 2Y, 0ãwæ(�)¥ÐëÔ,ìi	���  

From the linearity property of integrals, the Q�W function and ��
	 + 	� can be integrated 

separately, since they are summed over each other. The Q�W function will be integrated for values 

of � where ��
	 + 	� > Y. 

Vâmax	���,Ü + 	���	?>8< 2maxâ��,Ü + 	���	?>8< 2 Y, 0ã , 0ã
= 	` ���,Ü + 	���	?>8<	õ��	¥ÐëÔ,ìi	���
2` â��,Ü + 	���	?>8< 2 Yãõ��	ëÔ,ìi	��Ý ¥Ð 

 

(47) 
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The first integral is the price of a tail swaption, as described in the previous section. Focusing on the 

second integral, the boundary condition can be expanded as 

����%(�)� + 	E 2 ��., �, ��) = 	
 C ��., �, ��)��

���� �� + (�  

 

 

 

→ �(�, �E, �∗∗)�(�., �E, �∗∗) 2 	E 2 	
�� 2 �.	���, �E, �∗∗) 	+ 	E 2 ���, ��, �∗∗)
= 	
 C ���, ��, �∗∗)��

���� �� + (�  

Therefore �∗∗ is the standard normal random variable that satisfies the above equality. Since the 

boundary conditions for the first and second integrals are different, the value of the standard normal 

random variable satisfies the two boundary conditions will also be different. Therefore let �∗ be the 

standard normal random variable that satisfies the first integral’s boundary condition, i.e. such that �(
) + 	� � 0. The second integral will be integrated over all values of � > �∗∗. This, together with 

the linearity of integrals property, leads to the following two integrals, derived from the second 

integral: 

` ���,Ü + 	�?>8<��		õ��	¥Ðç
ö∗∗	 2	` Yõ��	¥Ðç

ö∗∗  

The first integral will yield equation (22), except that �∗∗ will used as parameter to the standard 

normal CDF, instead of �∗. The second integral will yield 

Y��2�∗∗	 
Therefore the second integral in equation (47) will yield 

'∗∗()	���%�., �, ��) 2 	(-�2�∗∗	 
Where '∗∗()	���%�., �, ��) is equation (22), except that the value of � that satisfies 

�(�, �E, �∗∗)�(�., �E, �∗∗) 2 	E 2 	
�� 2 �E	���, �E, �∗∗) 	+ 	E 2 ���, ��, �∗∗) = 	
 C ���, ��, �∗∗)��

���� �� + (�  

 instead of equation (24) will be used in the formula, which is denoted here �∗∗.  

Combining the two integrals from equation (47), we obtain 

'"3%%��!G�%(., �, ��) = '()	���%�., �, ��) 2 	'∗∗()	���%�., �, ��) + 	(-�2�∗∗	 
For a receiver swap, similar arguments will yield 

 "3%%��!G�%(., �, ��) =  ()	���%�., �, ��) 2 	 ∗∗()	���%�., �, ��) + 	(-��∗∗	 
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Proof of the swaption pricing formula under Black’s model 

A short proof of Black’s formula for swaptions will be given here. This is relevant since the rationale 

behind the proof will be used in the following proof. We start by assuming that swap rates are log-

normally distributed with the following equation, given by Bateson (2011:303), describing the swap 

rate at time � 

�� = �.�p�	�2 �j�j 2 	��√�	 (A.13) 

 

Since we are taking the expectation V�maxu��,Ü , 0w�, which can be translated to the following, 

_(.)�	#�Pop��� 2 	
, .)� (A.14) 

 

where, 

• ½(0) is the annuity factor, defined by Hull(2012:639) as ½(�) = 	 ∑ ��8ig 2	�8	���, �8)�fg8H�  

and where �� = � 

• � is the notional amount 

• � is the strike rate 

and the expectation will be an integral over all the values of � (since �� is the only stochastic factor 

in the equation, which in turn contains only � as a stochastic factor) for which �� 2 	� > 0, or for 

which �� exp ³2 ÷�h 2 	��√�´ > �. Since the left hand side of the previous inequality is a decreasing 

function of �, the  inequality will be satisfied for all values of � smaller than �∗, which is that value of � such that �� exp ³2 ÷�h 2 	��√�´ � �. Therefore we have 

¾¿��.	 2	��j�j + 	��∗� � ¾¿�
	 	→ 		�∗ � 1j � ¾¿ ³�.
´ 2 ~j�j�√�  

Therefore the following integral will be calculated 

_(�)�	#�Pop��� 2 	
, .) = _(�)�	 ` ��� 2 	
	��y	1y1j
fç  

� 	_��	���.¼ Ejø` �p��2�j�j 2 	�y√�� �p��2yjj �1y 2 ù
	` ��y	1y1j
fç �1j

fç ù 

� 	_��	���.¼ Ejø` �p� Å2Ej uy + �√�wjÆ1y 21j
fç 
-�1j	� 

If (Ð + �√�) is substituted by Ð̅ (change of variables), the top integration limit will change to ¥h + 	�√� � ¥g. Since the substitution transformed the integral into a normal cumulative 

distribution function (CDF) with ¥h as parameter, the final formula for the payer swaption is now 
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'�., �, ��)*%�"ª = 	_��	���.-�1E	 2 	
-�1j		 
For a receiver swaption, the same rationale is followed, except that the expectation is now taken by 

integrating for all values of � > ¥h. This yields 

 (., �, ��)*%�"ª = 	_��	��
-�21E	 2	�.-�21j		 
 

 

Adjusting for a tail swap 

When using Black model to calculate EE, the adjustment will also have to be made for the 

assumption that the entire period’s cash flows are lost, should default occur between two payment 

dates. The difference between the ordinary swap at time T, S(0, T, Tü) and the tail swap at time T, Sm(0, T, Tü), will be denoted by D again, and has the same definition as in the Hull-White case 

(Equation (9)) 

�?>8<(�) = 	�$�0, �, ��) 2 	��0, �, ��) = �(	 ��0, �, �g)�(0, ��, �g) 2 	1 2 	��� 2 ��	��0, �, �g)) 

 

The expectation to calculate the payer swaption value will hence change to 

,(.)#�Pop(�(�, �, ��) + 	���	���%, .)�,(�) = 	��., ., �)_(�)�	# Ç��0 Å�� 2 	
 + ����%��	_��	 , .ÆÈ 

Since the boundary condition for exercise has now changed to  

�� 2 	
 + �_��	 � �. �p��2�jj � 2 	��√�� 2 
 + ���	���%�. _��	 � . 

 

((((A.1A.1A.1A.15555))))    
 

 

and the terms  
�(î,î�)�(î�,î�)− 	1 in �?>8<, taken together, represents a forward rate between times �g$  and �, denoted (� −	��)K(0, ��, �), which we will shorten to K� . Since forward rates are log-normally 

distributed under Black’s model, and is given by (� −	��)K� = (� −	��)K�exp	 ³− ÷�h � − ��√�´. It 

will be assumed that the forward rate and forward swap rate have the same volatility �, which is an 

unrealistic, but necessary assumption, since this simplifies computation considerably. Since 

�(�)���%� = �.!0a �2 �jj � 2 ��√�� 2 	
(� − �.)�(., �, �E) 
we can substitute into the boundary condition given in equation (A.15), and solving the boundary 

condition for �, we get  
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� = 1j =
¾¿Á ³�.f �._(�)´Å
i
u�«�.w�u.,�,�Ew_(�) ÆÂ − ~jj �

�√�  
(A.16) 

 

 

Now, in the same fashion as in the previous subsection, we will use this ¥h as the upper boundary in 

the integral used for expectation. The expression 

_(.)�#
��
��
��.!0a�−�jj � − ��√�� − 
 + �(� − �.)�.�p� ³−

~jj � − �ð√�´ − Ã(� − �.)Ä(., �, �E)�_(�) 	
��
��
	
 

Is equal to  

_(.)�	 ���. + �.(� − �.)_(�) �` !0a�−�jj � − �y√��1E
fç �(y)1y − �
 + Ã(� − �.)Ä(., �, �E)_(�) �` �(y)1y1E

fç � 

Evaluating the integrals, we obtain an expression for '(., �, ��)*%�"ª	���% 
_(.)� Á��. + �.(� 2 �$)_(�) � -(1E) 2 	�
 + 
(� − �.)�(., �, �E)_(�) �-(1j)Â 

 

(A.17) 

 

which is for the payer swaption. For a receiver swaption, the same rationale is followed, except that 

the expectation is now taken for all values of � > ¥h. This yields 

 (., �, ��)*%�"ª	���%
= _(.)� Á�
 + 
(� 2 �.)�(., �, �E)_(�) � -(21E) 2 	��. + �.(� − �.)_(�) �-(−1j)Â 

 

in the same fashion as in the previous subsection, with ¥g = ¥h + 	�√
 (resulting from a change of 

variables that was necessary in the first integral).  

 

Adjusting for collateral 

Consider a payer swaption with regular collateral posting. Let the collateral threshold amount be 

defined by Y. Also, for simplicity, disregard the grace period and assume that collateral is posted on 

every date that EFE is calculated. Gibson (2005:6) suggests that EFE can be calculated by taking 

expectation of 

Vâmax	(��̅,Ü −maxâ��̅,Ü − 	Y, 0ã , 0)ã 
then remembering that ��̅,Ü = ��,Ü + 	�, we have rather 
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Vâmax	u��,Ü +	�?>8<(�) − maxâ��,Ü +	�?>8<(�) − Y, 0ã , 0wã 
Now to integrate this, with two Q�W functions, it needs to be observed that if ��,Ü + 	�(�)?>8< > Y, 

then the above expression will reduce to  

V�Y� = ` Y¥��,ÜëÔ,ìi	��Ý  

If  0 < �(
) + 	� < Y, then since the inner Q�W function is now zero, we have 

Vâ��,Ü +	�?>8<(�)ã = 	` u��,Ü +	�?>8<(�)w¥��,Ü�ôëÔ,ìi	�ôÝ  

Finally, if ��,Ü + �?>8<(�) < 0, we have 

V�0� = 0 

Therefore, the entire function is non-zero as long as ��,Ü +	�?>8<(�) > 0, so therefore the outer Q�W function will be integrated on all values for � where ��,Ü +	�?>8<(�) > 0, and the inner Q�W 

function integrated on all values where ��,Ü +	�?>8<(�) > Y, as follows: 

Vâmax	(��,Ü + 		�(�)?>8< −maxâ��,Ü +	�?>8<(�) − Y, 0ã , 0ã
= 	` u��,Ü +	�?>8<(�) − maxâ��,Ü +	�?>8<(�) − Y, 0ãw¥ÐëÔ,ìi	�(�)ÕÓ�ê��  

From the linearity property of integrals, the Q�W function and �(
) + 	� can be integrated 

separately, since they are summed over each other. The Q�W function will be integrated for values 

of � where ��,Ü + �(�)?>8< > Y. 

Vâmax	(��,Ü + 	�(�)?>8< −maxâ��,Ü +	�?>8<(�) − Y, 0ã , 0ã
= 	` u��,Ü +	�?>8<(�)w¥Ð − ` maxâ��,Ü + �?>8<(�) − Y, 0ãëÔ,ìi	��� ¥ÐëÔ,ìi	���
= ` ³��,Ü +	�?>8<(�)´ ¥Ð −ëÔ,ìi��� ` u��,Ü + �?>8<(�) − YwëÔ,ìi	��Ý ¥Ð 

 

Now, the boundary value for � that satisfies ��,Ü +	�?>8<(�) > Y is found in the same way as in the 

previous subsections, and is given by: 

¥g =
¾¿Á ³�.f	 �._(�)´Å (�_(�)	i	
i
u�«�.w�u.,�,�Ew_(�) ÆÂ + ~jj �

�√�  

¥h =
¾¿Á ³�.f �._(�)´Å (�_(�)	i	
i
u�«�.w�u.,�,�Ew_(�) ÆÂ − ~jj �

�√�  
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The first integral is just an option on a tail swap, so the EE under a (very simplified) collateral 

agreement for a payer swap, denoted '*�	�3%%(., �, ��),  is given by 

'���% 2 	_(�)� Á��. + �.(� − �.)_(�) �-(1E) −	� (�_(�) + 
 + 
(� − �.)�(�, �E)_(�) �-(1j)Â 

 

 

 

 

Credit Valuation Adjustment 

A proof is given here for equation (7), the formula to calculate CVA. The proof was adapted from a 

paper by Stein and Lee (2010:4-6). In the proof given by Stein and Lee, bonds and swaps were 

considered, however, for the sake of relevance, only swaps will be considered in this proof. 

Let A and B be two counterparties. Consider a contract that A enters into with B, with price process �(
, �) at time t when not adjusting for default risk. If B was to default at the current time (time t = 

0), and the contract had positive value (�(
, �) > 0) to A, A then loses the amount (1 − Z) ×�̅(
, �), where Z is the recovery rate and �̅(
, �) the price of a tail swap at time t. If the contract had 

negative value (�(
, �) < 0), A loses nothing.  The current exposure to default is thus 

(1 − Zcd) ×max(�̅(0, �), 0) 
 

If � is the default time, the exposure to default at time � is 

(1 − Zcd) ×max	(�̅(�, �), 0) 
 

(A.18) 

Refer section The swaption approach to calculating CVA for an explanation of (A.18) and the usage 

of tail swaps. Now note that max	(�(
, �), 0) is the payoff of an option to buy or sell a swap contract 

at time t, that matures at time T.  Taking the expectation of (A.18) with respect to a numeraire that 

has value r(
) at time 
, the following is obtained 

r(0)V n(1 − Zcd)max(�̅(�, �), 0)r(�) 1�ô�q 
= (1 − Zcd)r(0)V n` max(�̅(�, �), 0)r(�) 
(
 − �)¥
�

� q 
= (1 − Zcd)r(0) n` V nmax(�̅(�, �), 0)r(�) 
(
 − �)q ¥
�

� q 
where 1�ô� is the indicator function of (� < �) and 
 is the Dirac delta function. Assume that 

default time is independent of contract value and the numeraire under the equivalent martingale 

measure. The expectation of the products is therefore equal to the product of the expectations, so 

then the above formula reduces to 
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(1 − Zcd)r(0) n` V nmax(�̅(�, �), 0)r(�) q V�
(
 − �)�¥
�
� q 

= (1 − Zcd) n` r(0)V nmax(�̅(�, �), 0)r(�) q V�
(
 − �)�¥
�
� q 

The first expectation in the integrand above is the price of an option to enter into a tail swap at time 

�, while the second expectation is the density function of the distribution of default times, b, 

evaluated at �, therefore b(�). The formula for CVA therefore becomes 

(1 − Zcd)` �̅(�, �)b(�)¥
�
�  

proving equation (7). 

 

 

Difference between a swap and a tail swap 

A proof is given here for equation (9), the expression that describes the difference between a swap 

and a tail swap. The proof is adapted from Stein and Lee (2010:13-14). Stein and Lee allowed for 

different periodicities for the fixed and floating legs. In this paper, the simplifying assumption was 

made that fixed and floating legs have the same periodicity. 

The time 
 price of a swap (paying fixed rate) can be represented as  

�(
, �) = 	C K(
, 
8 , 
8ig)�(
, 
8ig)ℎ8 − �	@fg
8H� C�(
, 
8ig)ℎ8@fg

8H�  

 

(A.19) 

 

where 

• 5 = (� − 
)/ℎ 

• 
� = 
 is the first reset date 

Since  

K(
, 
8 , 
8ig) = Å1ℎÆ � �(
, 
8)�(
, 
8ig) − 1� 

Substituting the above into (A.19) yields 

�(
, �) = �(
, 
�) − �(
, 
@) − �	C�(
, 
8ig)ℎ8@fg
8H�  

 

(A.20) 
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Now, let 
̅, 
�̅, etc. represent the same information for a tail swap. Refer to section 1.3 for a 

definition of tail swaps. All of the information is the same, except that the first reset date, 
�̅, is 

before or on the valuation date, 
̅, i.e. 
�̅ <	 
̅. The first payment can therefore be represented at 

time 
 as 

�(
, 
g)�(
�̅, 
g) − �(
, 
g) 
The value of the tail swap is then 

�̅(
, �) = �(
, 
g)�(
�̅, 
g) − �(
, 
g) +C K(
, 
8 , 
8ig)�(
, 
8ig)ℎ8 − �ℎ��(
, 
�) − �C�(
, 
8ig)ℎ8@fg
8Hg

@fg
8Hg 	 

�̅(
, �) = �(
, 
g)�(
�̅, 
g) − �(
, 
@) − �ℎm��(
, 
g) − �C�(
, 
8ig)ℎ8@fg
8Hg  

 

(A.21) 

 

 

To find the difference between the ordinary swap and tail swap, the difference between (A.20) and 

(A.21) is taken 

�̅(
, �) − �(
, �) = �(
, 
g)�(
g$ , 
g) − �(
, 
�) − �(ℎm� − ℎ�)�(
, 
g) 
Since 
� = 
 and ℎm� corresponds to the full period, letting ℎ denote the full period we obtain 

�̅(
, �) − �(
, �) = �(
, 
g)�(
g$ , 
g) − 1 − �. (ℎ − ℎ�)�(
, 
g) 
 

 

 

 

 

 

 

 

 

 



 

Appendix 

This section contains the data used for the calibration and eventual calculation of EE profiles and 

CVA for a South African scenario. Implied v

each date.

20/02/2014

Maturities

 

Appendix B – Data Used

This section contains the data used for the calibration and eventual calculation of EE profiles and 

CVA for a South African scenario. Implied v

each date. 

20/02/2014 

Maturities 0.083333

Data Used

This section contains the data used for the calibration and eventual calculation of EE profiles and 

CVA for a South African scenario. Implied v

0.083333 0.164

0.25 0.182

0.5 0.198

1 0.239

2 

3 0.216

4 0.191

5 0.181

7 0.164

10 0.149

Data Used 

This section contains the data used for the calibration and eventual calculation of EE profiles and 

CVA for a South African scenario. Implied volatility matrices and term structure plots are listed under 

Tenors

1 

0.164 0.217

0.182 0.22

0.198 0.219

0.239 0.228

0.23 0.236

0.216 0.208

0.191 0.189

0.181 0.178

0.164 0.163

0.149 0.148
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This section contains the data used for the calibration and eventual calculation of EE profiles and 

olatility matrices and term structure plots are listed under 

Tenors 

2 3

0.217 0.205

0.22 0.216

0.219 0.222

0.228 0.233

0.236 0.222

0.208 0.204

0.189 0.187

0.178 0.177

0.163 0.162

0.148 0.145

 

 

 

 

 

 

This section contains the data used for the calibration and eventual calculation of EE profiles and 

olatility matrices and term structure plots are listed under 

3 4 

0.205 0.182 

0.216 0.215 

0.222 0.207 

0.233 0.236 

0.222 0.211 

0.204 0.198 

0.187 0.184 

0.177 0.177 

0.162 0.16 

0.145 0.142 

This section contains the data used for the calibration and eventual calculation of EE profiles and 

olatility matrices and term structure plots are listed under 

5 

0.151 

0.216 

0.203 

0.24 

0.204 

0.194 

0.183 

0.176 

0.159 

0.14 

This section contains the data used for the calibration and eventual calculation of EE profiles and 

olatility matrices and term structure plots are listed under 

7 

0.17 0.197

0.224 

0.199 0.196

0.222 

0.198 0.191

0.175 0.184

0.18 0.176

0.172 0.168

0.155 0.156

0.141 0.143

 

This section contains the data used for the calibration and eventual calculation of EE profiles and 

olatility matrices and term structure plots are listed under 

10 

0.197 

0.2 

0.196 

0.2 

0.191 

0.184 

0.176 

0.168 

0.156 

0.143 



 

21/02/2014

Maturities

 

27/02/2014

Maturities

21/02/2014 

Maturities 0.083333

0.25

27/02/2014 

Maturities 0.083333

0.25

0.083333 0.164

0.25 0.182

0.5 0.199

1 0.241

2 0.234

3 0.217

4 0.193

5 0.181

7 0.171

10 0.148

0.083333 0.166

0.25 0.187

0.5 0.198

1 0.225

2 0.235

3 0.222

4 0.189

5 0.186

7 0.166

10 0.151

Tenors 

1 2 

0.164 0.218 

0.182 0.221 

0.199 0.221 

0.241 0.231 

0.234 0.238 

0.217 0.21 

0.193 0.19 

0.181 0.176 

0.171 0.167 

0.148 0.147 

Tenors 

1 2

0.166 0.22

0.187 0.226

0.198 0.221

0.225 0.219

0.235 0.242

0.222 0.21

0.189 0.19

0.186 0.179

0.166 0.164

0.151 0.149
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 3 

 0.207 

 0.218 

 0.224 

 0.236 

 0.224 

 0.205 

 0.186 

 0.177 

 0.165 

 0.145 

 

2 3 

0.22 0.209 

0.226 0.222 

0.221 0.222 

0.219 0.227 

0.242 0.225 

0.21 0.206 

0.19 0.186 

0.179 0.178 

0.164 0.165 

0.149 0.147 

4 

0.183 0.152

0.217 0.217

0.209 0.205

0.238 0.242

0.212 0.204

0.198 0.195

0.185 0.184

0.177 0.177

0.162 0.161

0.143 0.142

 4 

 0.185 

 0.221 

 0.202 

 0.23 

 0.214 

 0.199 

 0.184 

 0.177 

 0.163 

 0.145 

5 

0.152 0.171

0.217 0.225

0.205 0.2

0.242 0.224

0.204 0.2

0.195 0.176

0.184 0.18

0.177 0.172

0.161 0.157

0.142 0.142

5 

0.153 

0.22 

0.194 

0.236 

0.206 

0.196 

0.183 

0.178 

0.162 

0.143 

7 10

0.171 0.198

0.225 0.201

0.2 0.197

0.224 0.201

0.2 0.192

0.176 0.185

0.18 0.177

0.172 0.169

0.157 0.159

0.142 0.145

 

7 

0.172 

0.228 

0.194 

0.221 

0.2 

0.177 

0.181 

0.174 

0.0158 

0.143 

10 

0.198 

0.201 

0.197 

0.201 

0.192 

0.185 

0.177 

0.169 

0.159 

0.145 

10 

0.2 

0.203 

0.199 

0.202 

0.194 

0.187 

0.178 

0.17 

0.159 

0.145 



 

26/03/2014

Maturities

26/03/2014 

Maturities 0.083333

0.25

0.083333 0.172

0.25 0.192

0.5 0.2

1 0.217

2 0.243

3 0.224

4 0.198

5 0.187

7 0.171

10 0.157

Tenors 

1 2

0.172 0.229

0.192 0.231

0.2 0.223

0.217 0.212

0.243 0.247

0.224 0.216

0.198 0.196

0.187 0.183

0.171 0.169

0.157 0.155
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2 3 

0.229 0.222 

0.231 0.227 

0.223 0.223 

0.212 0.221 

0.247 0.231 

0.216 0.211 

0.196 0.192 

0.183 0.183 

0.169 0.167 

0.155 0.154 

 4 

 0.202 

 0.225 

 0.206 

 0.227 

 0.219 

 0.204 

 0.19 

 0.182 

 0.166 

 0.152 

5 

0.173 

0.225 

0.2 

0.235 

0.212 

0.201 

0.189 

0.182 

0.165 

0.151 

 

7 

0.176 

0.233 

0.201 

0.223 

0.206 

0.181 

0.185 

0.177 

0.163 

0.149 

 

10 

0.181 

0.208 

0.204 

0.208 

0.198 

0.191 

0.184 

0.176 

0.164 

0.15 



 

19/06/2014

Maturities

 

 

 

 

 

 

 

 

 

19/06/2014 

Maturities 0.083333

0.25

0.083333 0.081

0.25 0.138

0.5 0.157

1 0.195

2 0.247

3 0.226

4 0.201

5 0.188

7 0.178

10 0.159

Tenors 

1 2

0.081 0.113

0.138 0.171

0.157 0.174

0.195 0.186

0.247 0.248

0.226 0.218

0.201 0.198

0.188 0.186

0.178 0.174

0.159 0.157
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2 3 

0.113 0.126 

0.171 0.167 

0.174 0.179 

0.186 0.187 

0.248 0.226 

0.218 0.21 

0.198 0.195 

0.186 0.187 

0.174 0.173 

0.157 0.157 

 4 

 0.131 

 0.164 

 0.173 

 0.187 

 0.21 

 0.202 

 0.193 

 0.186 

 0.171 

 0.157 

5 

0.127 

0.163 

0.174 

0.188 

0.199 

0.199 

0.191 

0.185 

0.171 

0.157 

7 

0.133 

0.172 

0.169 

0.183 

0.19 

0.179 

0.19 

0.185 

0.17 

0.159 

 

10 

0.141 

0.157 

0.165 

0.179 

0.177 

0.188 

0.188 

0.184 

0.173 

0.162 
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Appendix C – Python Code 

This section contains Python code for selected algorithms. The actual code used to obtain the results 

is far more extensive than what is listed here. Including everything would require a whole document 

on its own. 

The function to calculate EE on a specific date under Hull-White model follows. The function returns 

two values: The first is the value of the swaption/EE on a date expDate. The second returns the DV01 

measure of the first return value. The tail parameter was used to determine whether we are pricing '()(., �, �) or '()	���%(., �, ��). Under no collateral agreements, threshold was zero. Under a 

collateral agreement, threshold was zero for the '()	���%(., �, ��) portion of the formula, and 

equal to the collateral threshold for the '∗∗()	���%(., �, ��) + 	(-(−�∗∗) portion of the formula. 

The rest of the parameters are self-explanatory. Note this function is spread over the next 4 pages. 

  #prices a swaption or EE with the given arguments 

    def priceSwaption(self, expDate, strike, principal, endDate = -1,  
                      tail = True, n = 1, payer = True, threshold = 0): 
         
        if endDate - expDate < 0.31: 
            printout = 1; 
        else: 
            printout = 0; 
        sub = False 
        annuity = self.Annuity_f(0, expDate, endDate, printout); 
 
        if (compFloat(expDate, endDate) >= 0): 
            print("Swaption expiry date must be before swap end date...returing zero") 
            return [0, 0] 
 
        #set default argument for endDate 
        if (endDate == -1): 
            endDate = self.dates[len(self.dates)-1] 
 
        if (not(self.isRegular(endDate))): 
            sub = self.subTermStruct(endDate); 
         
        toNext = self.distToDates(expDate)[1]   #how long until the next payment date,    
    #from the current expiry date 
        if (not(compFloat(toNext, self.dt) == 0)):   #check if expDate does not fall  
        #on one of the regular payment dates.    
            posDel = self.modTermStruct(expDate)     #if it does, this function adds  
         #the new date and interpolates 
         #(or extrapolates) the new value  
         #on termStruct  
            t1bar = self.dates[posDel-1] 
            t = self.dates[posDel] 
            t1 = self.dates[posDel+1] 
            h1 = toNext 
            regular = False 
        else: 
            posDel = self.getDateIndex(expDate) 
            t = self.dates[posDel] 
            t1 = self.dates[posDel+1] 
            t1bar = t 
            h1 = toNext 
            regular = True 
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if (expDate > 0): 

            if payer: 
                z = self.solve(margin=0.0000001, expDate=expDate,  
                               strike=strike + (threshold/principal/annuity),  
                               posDel=posDel, endDate=endDate, tail=tail,  
                               regular = regular)       #solve for z, to get the  
           #boundary value 
            else: 
                strikeArg = strike - (threshold/principal/annuity) 
                if strikeArg <= 0: 
                    strikeArg = 1e-10; 
                z = self.solve(margin=0.0000001, expDate=expDate,  
                               strike=strikeArg, posDel=posDel, endDate=endDate,  
                               tail=tail, regular = regular)   #solve for z, to get 
             #the boundary value 
         
        else: 
            z = 0 
         
        ti = expDate + toNext; 
        expPos = posDel;   
         
        count = 0 
        sumPmt = 0 
        sumPmtD = 0 
        for j in self.dates[(expPos + 1):self.getDateIndex(endDate) + 1]:           
 
            if (count == 0): 
                incr = toNext; 
            else: 
                incr = self.dt; 
            if payer: 
                sumPmt = sumPmt  
                         + self.D(0, 0, j)*norm.cdf(-z  
     - sqrt(self.vsq(0, expDate, j)))*incr; 
 
                sumPmtD = sumPmtD  
                          + self.DV01_ZC(j)*norm.cdf(-z  
      - sqrt(self.vsq(0, expDate, j)))*incr 
            else: 
                sumPmt = sumPmt  
                         + self.D(0, 0, j)*norm.cdf(z  
     + sqrt(self.vsq(0, expDate, j)))*incr; 
 
                sumPmtD = sumPmtD  
                          + self.DV01_ZC(j)*norm.cdf(z  
      + sqrt(self.vsq(0, expDate, j)))*incr; 
 
            count = count + 1 
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if payer:       #if we are pricing a payer swaption 

            if (compFloat(expDate, 0) == 0): 
                optionVal = principal*max(n*self.fwdSwap(0, 0, endDate)  
                - strike, 0)*sumPmt;  #If the expiry date is today, 
        #returns the expected value of the 
         #swaption with constants, since all  
             #values are known 
 
                if optionVal == 0: 
                    delta = 0 
                else: 
                    subSwap = n*self.fwdSwap(0, 0, endDate) 
                    tempTermStruct = self.termStruct 
                    self.termStruct = asarray(self.termStruct) 
                    self.termStruct = self.termStruct + 0.0001 
                    delta = self.fwdSwap(0, 0, endDate) - subSwap 
                    self.termStruct = tempTermStruct 
                return [optionVal, delta] 
             
            v = exp(-sqrt(self.vsq(0, t, t1)*self.vsq(0, t1bar, t1))  
            + self.vsq(0, t1bar, t1)) 
            cdf = norm.cdf(-z + sqrt(self.vsq(0, t1bar, t1))  
            - sqrt(self.vsq(0, t, t1))) 
             
            if (tail): 
                D = self.D(0, 0, t1bar)*v*cdf - self.D(0, 0, t)*norm.cdf(-z)  
                - strike*(self.dt - h1)*self.D(0, 0, t1)*norm.cdf(-z 
      - sqrt(self.vsq(0, t, t1))) 
                Ddelta = self.DV01_ZC(t1bar)*v*cdf - self.DV01_ZC(t)*norm.cdf(-z)  
                - strike*(self.dt - h1)*self.DV01_ZC(t1)*norm.cdf(-z 
      - sqrt(self.vsq(0, t, t1))) 
                if compFloat(D, 0) == 0: 
                    D = 0 
                    Ddelta = 0 
            else: 
                D = 0 
                Ddelta = 0 
             
            optionVal = principal*(D + n*self.D(0, 0, expDate)*norm.cdf(-z)  
            - n*self.D(0, 0, endDate)*norm.cdf(-z  
  - sqrt(self.vsq(0, expDate, endDate)))  
            - strike*sumPmt - (norm.cdf(-z)*threshold/principal)) 
            delta = principal*(Ddelta + n*self.DV01_ZC(expDate)*norm.cdf(-z)  
            - n*self.DV01_ZC(endDate)*norm.cdf(-z  
  - sqrt(self.vsq(0, expDate, endDate)))  
            - strike*sumPmtD) 
             
             
            if (not(compFloat(modFloat(expDate, self.dt), 0) == 0)):    
                del self.termStruct[posDel], self.dates[posDel]; 
            if (sub): 
                self.restoreTermStruct() 
                 
            return [optionVal, delta]; 
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else:       #if we are pricing a receiver swaption 

            if (compFloat(expDate, 0) == 0): 
                optionVal = principal*max(-n*self.fwdSwap(0, 0, endDate) +  
      strike, 0)*sumPmt;    #If the expiry date is today, returns the  
        #expected value of the swaption 
        #with constants, since all values are known 
 
                if optionVal == 0: 
                    delta = 0; 
                else: 
                    subSwap = n*self.fwdSwap(0, 0, endDate) 
                    tempTermStruct = self.termStruct 
                    self.termStruct = asarray(self.termStruct) 
                    self.termStruct = self.termStruct + 0.0001 
                    delta = -self.fwdSwap(0, 0, endDate) + subSwap 
                    self.termStruct = tempTermStruct 
                return [optionVal, delta] 
             
            v = exp(-sqrt(self.vsq(0, t, t1)*self.vsq(0, t1bar, t1))  
   +  self.vsq(0, t1bar, t1)) 
 
 
          cdf = norm.cdf(z - sqrt(self.vsq(0, t1bar, t1))  
   + sqrt(self.vsq(0, t, t1))) 
            if (tail): 
                D = -self.D(0, 0, t1bar)*v*cdf + self.D(0, 0, t)*norm.cdf(z)  
                    + strike*(self.dt - h1)*self.D(0, 0, t1)*norm.cdf(z 
     + sqrt(self.vsq(0, t, t1))) 
 
                Ddelta = -self.DV01_ZC(t1bar)*v*cdf + self.DV01_ZC(t)*norm.cdf(z)  
                         + strike*(self.dt - h1)*self.DV01_ZC(t1)*norm.cdf(z  
     + sqrt(self.vsq(0, t, t1))) 
 
                if compFloat(D, 0) == 0: 
                    D = 0 
                    Ddelta = 0 
            else: 
                D = 0 
                Ddelta = 0 
             
            optionVal = principal*(D + -n*self.D(0, 0, expDate)*norm.cdf(z)  
                        + n*self.D(0, 0, endDate)*norm.cdf(z  
    + sqrt(self.vsq(0, expDate, endDate))) 
                        + strike*sumPmt - (norm.cdf(z)*threshold/principal)) 
            delta = principal*(Ddelta + -n*self.DV01_ZC(expDate)*norm.cdf(z)  
                    + n*self.DV01_ZC(endDate)*norm.cdf(z  
     + sqrt(self.vsq(0, expDate, endDate)))  
                    + strike*sumPmtD); 
            if (not(compFloat(modFloat(expDate, self.dt), 0) == 0)):     
                del self.termStruct[posDel], self.dates[posDel]; 
            if (sub): 
                restoreTermStruct() 
 
            return [optionVal, delta]; 
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The function used to solve for �∗, �∗∗, etc. in Hull-White swaption/EE valuation is directly below. 

After that, the function used to calculate the DV01 derivative for each zero-coupon bond follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#function to solve for z*, as required for Hull-White swaption valuation 

    def solve(self, margin, expDate, strike, posDel, endDate, tail = True, 
          n = 1, regular = False): 
         
        toNext = self.distToDates(expDate)[1] 
        if (not(regular)):      #check if expDate does not fall on 
                        #one of the regular payment dates     
            t1bar = self.dates[posDel-1] 
            t = self.dates[posDel] 
            t1 = self.dates[posDel+1] 
            h1 = toNext 
        else: 
            t = self.dates[posDel] 
            t1 = self.dates[posDel+1] 
            t1bar = t 
            h1 = self.dt 
         
        D = self.lambd(t1, 0.5, t)/self.lambd(t1, 0.5, t1bar) 
         
        def func(z): 
            if (self.getDateIndex(expDate) != -1): 
                expPos = self.getDateIndex(expDate); 
            if (tail): 
                D = self.lambd(t1, z, t)/self.lambd(t1, z, t1bar) 
                - 1 - strike*(self.dt - h1)*self.lambd(t1, z, t); 
                if (compFloat(D, 0) == 0): 
                    D = 0; 
            else: 
                D = 0 
            lhs = n*(D + 1 - self.lambd(endDate, z, expDate)) 
            rhs = 0 
            count = expDate + toNext;    
            for j in self.dates[(expPos + 1):(self.getDateIndex(endDate) + 1)]:        
                if (rhs == 0): 
                    incr = toNext; 
                else: 
                    incr = self.dt; 
                rhs = rhs + self.lambd(j, z, expDate)*incr; 
                count = count + self.dt 
            rhs = rhs*strike 
            return (lhs - rhs)**2 
         
        z = scipy.optimize.minimize_scalar(func).x 
        return z 
 

def DV01_ZC(self, maturity, tol = 10**-8): 

        if compFloat(maturity, 0) == 0: 
            return 0 
 
        newRate = -log(self.D(0, 0, maturity))/maturity + tol 
        diff = exp(-newRate*maturity) - self.D(0, 0, maturity) 
 
        return (diff/tol)*(10**(-4)); 
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The following function was used to price a swaption, or calculate EE, under Black’s model. The 

tailSwap and collateral parameters have the same meaning as the tail and threshold parameters in 

the Hull-White case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

def BS_Swaption(self, sigma, expDate, tenor, freq, strike = 0.05, fwdSwap = 0.05,         principal = 

1, isPayer = True, tailSwap = True, collateral = 0):               

        if compFloat(tenor, 0) == 0: 
            return [0, 0] 
         
        if expDate <= 0: 
            expDate = 1e-10 
         
        sumPmt = [0]; 
        annuity = round(self.Annuity_f(0, expDate, expDate + tenor), 9) 
        if compFloat(annuity, 0) == 0: 
            annuity = annuity + 1e-9 
        if not(isPayer):     
            collateral = -collateral 
 
        if tailSwap: 
            toNext = self.distToDates(expDate)[1] 
            fwdSwap = fwdSwap + (1/self.expectedDisc(0, expDate - self.dt  
            + toNext, expDate) - 1)/annuity 
                               
            strike = strike + strike*(self.dt - toNext)*self.expectedDisc(0,  
            expDate, expDate + toNext)/annuity +  
       collateral/annuity/principal 
        else: 
            strike = strike + collateral/annuity/principal 
         
        if (strike <= 0): 
            strike = 1e-10 
         
         
        d_1 = d1(fwdPrice=fwdSwap, strike=strike, sigma=sigma,  
              expDate=expDate, rfr=0) 
        d_2 = d2(fwdSwap, strike, sigma, expDate) 
 
         
        if compFloat(fwdSwap, 0) == 0: 
            fwdSwap = fwdSwap + 1e-9 
         
        if isPayer: 
            return [principal*annuity*(fwdSwap*norm.cdf(d_1)  
                    - strike*norm.cdf(d_2)),  
     0.0001*principal*annuity*norm.cdf(d_1)] 
        else: 
            return [principal*annuity*(strike*norm.cdf(-d_2)  
                    - fwdSwap*norm.cdf(-d_1)),  
     0.0001*principal*annuity*(norm.cdf(d_1) - 1)] 
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The functions used to calibrate the model follows. The first function, calibrate_sigma, finds a value 

for �, holding � constant. The second function finds a value for	�, holding � constant. The first 

function is therefore basically method 1 from section 2.4.6. Method 2 would comprise running the 

second function, calibrate_a, first, then calibrate_sigma, using the a from the first function. The 

third function, calibrate, comprises method 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

def calibrate_sigma(self, matrix, maturities, tenors): 
        def func(sigma): 
            tempSigma = self.sigma 
            self.sigma = sigma 
 
            vec = [0] 
            tenor_idx = 0 
            mat_idx = 0 
            for i in maturities: 
                tenor_idx = 0 
                for j in tenors[:len(tenors)]: 
                    IV = matrix[mat_idx][tenor_idx] 
                    PVmod = self.priceSwaption(i, self.fwdSwap(0, i, j),  
    1, j + i, False)[0] 
                    PV = self.BS_Swaption(IV, i, j, 1/self.dt, self.fwdSwap(0, 
    i, j), self.fwdSwap(0, i, j))[0]  
                    vec.append(PVmod/PV - 1) 
                    tenor_idx = tenor_idx + 1 
                mat_idx = mat_idx + 1 
 
            self.sigma = tempSigma 
            return vec 
            return sum(vec) 
        temp_sigma = self.sigma 
        ret = scipy.optimize.leastsq(func, temp_sigma); 
        return ret 
 
    def calibrate_a(self, matrix, maturities, tenors): 
        def func(a): 
            vec = [0] 
            tenor_idx = 0 
            mat_idx = 0 
            for i in maturities:     #i will be the row number (maturity) 
                tenor_idx = 0 
                for j in tenors[:(len(tenors)-1)]:  #j is the column number      
    
                    tenor_1 = tenors[tenor_idx + 1] 
                    sqrtVswap_1 = (self.D(0, 0, i)  
     - self.D(0, 0, i + j))*self.B(i, i + tenor_1, a) 
                    sqrtVswap_2 = (self.D(0, 0, i)  
     - self.D(0, 0, i + tenor_1))*self.B(i, i + j, a) 
                    IV_1 = matrix[mat_idx][tenor_idx + 1] 
                    IV_2 = matrix[mat_idx][tenor_idx] 
                    sumTerm = (sqrtVswap_1/sqrtVswap_2 - IV_1/IV_2) 
                    vec.append(sumTerm) 
                    tenor_idx = tenor_idx + 1 
                mat_idx = mat_idx + 1 
            return vec 
            return sum(vec) 
         
        temp_a = self.a 
        ret = scipy.optimize.leastsq(func, temp_a) 
        return ret; 
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Integration algorithm described in section 4.4: 

 

 

 

 

 

def calibrate(self, matrix, maturities, tenors, lifetime): 

        def func(vecPm): 
            tempA = self.a 
            tempSigma = self.sigma 
            self.a = vecPm[0] 
            self.sigma = vecPm[1] 
 
            principal = 1000 
            vec = [0] 
            tenor_idx = 0 
            mat_idx = 0 
 
            for i in maturities: 
                tenor_idx = 0 
                for j in tenors[:len(tenors)]: 
                    co_terminal = i + j; 
                     
                    if (co_terminal > lifetime - lifetime/10*3)  
     and (co_terminal < lifetime + lifetime/10*3): 
                        weight = 1 
                    else: 
                        weight = 0 
                     
                    IV = matrix[mat_idx][tenor_idx] 
                    PVmod = self.priceSwaption(i, self.fwdSwap(0, i, j), 
           principal, j + i, False)[0] 
                    PV = self.BS_Swaption(IV, i, j, 1/self.dt,  
        self.fwdSwap(0, i, j), self.fwdSwap(0, i, j),  
     principal)[0] 
                    vec.append(weight*(PVmod/PV - 1)) 
                    tenor_idx = tenor_idx + 1 
                mat_idx = mat_idx + 1 
     
            self.a = tempA 
            self.sigma = tempSigma 
            return vec 
            return sum(vec) 
 
        a_init = float(self.calibrate_a(matrix, maturities, tenors)[0]) 
        sigma_init = float(self.calibrate_sigma(matrix, maturities, tenors)[0]) 
        ret = scipy.optimize.leastsq(func, [a_init, sigma_init]) 
        self.a = ret[0][0] 
        self.sigma = ret[0][1] 
 

def integrate(self, x, y): 

        area = [0] 
        for i in range(len(x)-1): 
            incr = x[i+1] - x[i] 
            yVal = (y[i+1] + y[i])/2 
            area.append(incr*yVal) 
        return sum(area) 
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Appendix D – Guide to software used 

A brief guide to using the (custom made) software to calculate the results given in section 5 is given 

in this appendix. The program does not have a name (yet), and is far from perfect, as some 

refinements are yet to be done on it. 

The first screen will look like this. The white block in the middle with the heading “interest rate 

environments” will list all the already created interest rate environments. Each environment is 

described by the Hull-White one-factor model, so an � and � parameter is listed for each 

environment. Before anything can be done in the program, a new environment has to be created, by 

clicking the “Create new environment” button at the top, and each one can also be deleted by 

selecting it and clicking “Delete” in the top right corner. 

 

Figure 7-1: The opening screen of the software used in this paper 

When “Create new environment” is clicked, the following screen will appear: 

 

Figure 7-2: Details for each interest rate environment is entered here as it is created 

In each corresponding field, a value for � and � is entered, as well as the path of the file containing 

the term structure rates and dates, the name of the environment, and whether the payment 

frequency will be quarterly, semi-annually or annually for all swaps priced in the environment. In 

future versions of the program, environments will be able price swaps with different frequencies, 

but for the purposes of this paper, this sufficed. An example of how the term structure file has to 

look, is on the next page. The dates and maturity columns have to be in the columns that they are, 

but they can be any length. They have to be, of course, of the same length. The file also has to be in 

.csv format. 
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Figure 7-3: Format for the term structure (zero curve) input 

After clicking “Submit” on the screen indicated by Figure 7-2, the main screen will look like this: 

 

Figure 7-4: Main screen after an environment has been added 

When an implied volatility matrix is available, the user will probably want to calibrate the interest 

rate model. The “Calibrate” button in the top left corner is for this purpose. A small menu will pop 

up when it is clicked, with the path of the .csv file containing the matrix (as with the term structure) 

and the remaining lifetime of the swap (in years) that is to be analysed. Please note that calibration 

may take a few minutes. Also note that if the implied volatility matrix is to be used when using 
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Black’s model, calibration (unnecessarily) has to be done on the Hull-White model first. This is 

another feature that will be improved in the future. The format of the .csv file containing the implied 

volatility matrix also has a compulsory format, which looks as follows: 

 

Figure 7-5: Format of the implied volatility matrix input 

Any number of rows and columns may be added, though. 

After an interest rate environment has been added, the “Swap Analysis” button will take the user to 

the following screen 

 

Figure 7-6: Screen where conditions of the swap to be analysed can be set 
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All the fields above are compulsory. When the user clicks the “Set Portfolio…” button, the following 

window will pop up: 

 

Figure 7-7: Window where swap portfolio is set up 

Once again, all the fields are compulsory. When the window first pops up, everything below the “No. 

of swaps” label and field will not be there. It is only after setting how many swaps there should be, 

that the fields below will appear. In the fields at the top right, the starting or end dates for all the 

swaps can be set. It is highly recommended that all swaps either end or start on the same date, and 

that at least one swap starts on the present date. All swaps are also either payer or receiver swaps, 

and the swap rate is the same for all. This is to set up one of the scenarios described in section 

2.1.2.1. The analysis of more complex swap portfolios is subject to more research and is outside the 

scope of this paper. 

When the user is satisfied with all inputs, he/she should click “Set Portfolio” in the bottom right-

hand corner, and if all the inputs in the window from Figure 7-6 is satisfactory, the “Submit” button 

of that window in the bottom left-hand corner will calculate CVA and the EE profile. The “Plot EFE 

Profile” button will plot the EE profile. It is recommended to keep the swap portfolio window open 

while doing analysis, so that the portfolio can be easily changed. Each time it has been changed, 

simply click the “Set Portfolio” button again.  

The program is exited by closing the main window that lists all the interest rate environments. 
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