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Abstract 

Following the 2008 financial crisis, global regulatory authorities have highlighted the need for 

transparency in over the counter derivative transactions as well as the quantification of counter-

party credit risk in the form of credit value adjustments (CVA) amongst others. Default probabili-

ties are essential to multiple facets of the measurement and management of credit risk and are 

essential for CVA, which are required by the International Financial Reporting Standards. De-

fault probabilities can be determined from quoted bond prices in the markets or credit default 

swap (CDS) spreads. However, bond and CDS market data are not always available and may 

be particularly complex for the counterparty being evaluated in the transaction. Structural mod-

els apply an option-theoretic approach inspired by Merton (1974) that uses equity market and 

financial statement data in order to determine default probabilities. The research found that the 

Merton and Delianedis & Geske (D&G) structural models provide limited information regarding 

the credit risk of firms in the South African market. The low levels of leverage amongst South 

African firms was found to be a primary reason for the inability of the basic structural models to 

capture the credit risks associated with the firms. Moreover, the extensions of the Merton (1974) 

model although practically challenging to implement, may provide a consistent and reliable 

manner in which to determine default probabilities from financial statement and equity market 

data.       

Key words: 

Credit valuation adjustments; Default probabilities; Structural models of default probabilities; 

South African equity market, South African financial statement information; Credit default swaps 
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Opsomming 

Na aanleiding van die finansiële krisis van 2008, het die globale regulerende owerhede die 

behoefte beklemtoon vir deursigtigheid in oor die toonbank finansiële afgeleide instrument 

transaksies, asook die kwantifisering van teenparty kredietrisiko in die vorm van kredietwaarde-

aanpassings (CVA), onder andere. Wanbetaling waarskynlikhede is noodsaaklik om verskeie 

fasette van die meting en bestuur van kredietrisiko en is noodsaaklik vir CVA, wat vereis word 

deur die Internasionale Finansiële Verslagdoeningstandaarde. Wanbetaling waarskynlikhede 

kan bepaal word vanaf gekwoteerde verbande in die mark of Crediet wanbetaling 

uitruilkontrakte (CDS). Maar verbande en CDS mark data is nie altyd beskikbaar nie, en kan 

veral kompleks raak vir die geëvalueerde teenparty in die transaksie. Strukturele modelle pas 'n 

opsie-teoretiese benadering geïnspireer deur Merton (1974) wat die aandelemark en die 

finansiële state data gebruik om die wanbetaling waarskynlikhede te bepaal. Die navorsing het 

bevind dat die Merton en Delianedis & Geske (D&G) strukturele modelle bied beperkte inligting 

oor die kredietrisiko van maatskappye in die Suid-Afrikaanse mark. Die lae vlakke van die 

hefboom onder Suid-Afrikaanse maatskappye is gevind as 'n primêre rede vir die onvermoë van 

die basiese strukturele modelle om die krediet risiko wat verband hou met die maatskappye te 

vang. Verder het die uitbreidings van die Merton (1974) model, hoewel prakties 'n uitdaging om 

te implementeer, kan 'n konsekwente en betroubare wyse waarop die wanbetaling 

waarskynlikhede bepaal van af die finansiële state en data aandelemark bied. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

A large number of financial institutions devote considerable resources and efforts towards the 

measurement and management of credit risk. Credit risk arises from the possibility that borrow-

ers and counterparties in financial transactions may default (Hull, 2012:521). Counterparty credit 

risk (CCR) also known as default risk, is the risk that a counterparty in an over the counter 

(OTC) derivatives transaction will default before the expiration date and not be able to meet 

both current and future obligations arising from the contract. Following the financial crisis of 

2008 and the default of major banks and corporations that the idea of risk free and ‘too big to 

fail’ can no longer be justified and thus virtually all OTC traded positions bear credit risk in the 

form of CCR (Gregory, 2012a: 16). Hull (2012:532) mentions that for every derivative position 

entered into, where the contract is an asset and the counter party thus has an obligation, is ex-

posed to default risk unless it is fully mitigated. The understanding and measurement of the 

probability of default is therefore essential to the market as a whole because of widespread im-

pact of credit risk. 

As of 1 January 2013, the International Financial Reporting Standards (IFRS) 13 requires that 

fair value of OTC derivatives be measured at fair value that includes the market participants’ 

expectation of the risk of default with regards to both parties involved in the derivatives transac-

tion. As a result, IFRS 13 necessitates entities to incorporate the effects of credit risk when de-

termining a fair value measurement, e.g. by calculating a debit valuation adjustment (DVA) or a 

credit valuation adjustment (CVA) on their derivatives (Ernst & Young, 2014). The probability of 

default is critically important in determining CVAs for both financial reporting standards and the 

valuation of derivatives. Thus in order to calculate CVAs as well as effectively manage, quantify 

and measure counterparty credit risk various models are required. One of these would be a 

model that estimates risk-neutral default probabilities, which is a parameter obtained from ob-

served market data. 

Estimating the probability of default is essential to the management and handling of credit risk, 

however making such an estimate is not a simple task. According to Trujillo and Martin (2005) 

there are in essence three possibilities available to us for estimating/determining the probability 

of default: using historical experience of default derived from credit ratings; market implied de-

faults from credit spreads; or lastly, employing some statistical or financial model to derive, from 

knowledge of a data series, the probability of default. The last alternative is the basis for so-

called structural models, which will be the focus of this research paper. The theoretical inspira-

tion for the series of structural models is that of Merton (1974).   
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The key characteristic of these structural models is that they estimate risk-neutral probabilities 

of default from financial statement information data over time or use market data of specific var-

iables over time. 

1.2 PROBLEM STATEMENT 

The changes in financial reporting standards have necessitated that even non-banking entities 

must account for and incorporate fair value adjustment such as CVA into the valuation of deriva-

tive instruments and contracts. The risk-neutral probabilities can be estimated from bond prices 

and asset swaps or alternatively implied from Credit Default Swap (CDS) quotes (Hull, 2009: 

554). 

Defining credit spreads from the premiums of single-name Credit Default Swaps (CDSs) instead 

of bond yields compared to some benchmark would give a more accurate measure of CCR, but 

CDS data is complex and not readily available (Gregory 2012a: 215). Whether the probability of 

default is estimated from CDS spreads or bond prices, an estimate of the recovery rate is also 

required where the recovery rate is the amount the investor is expected to receive if the coun-

terparty in the transaction defaults. Credit spreads are also affected by additional factors such 

as tax differences, liquidity and recovery rates (Hayne, 2004). 

Entities involved in credit and derivative transactions may not have easily accessible bond or 

CDS data from which to estimate the probability of default. An alternative method to estimate 

the probability of default is thus required, in order to quantify and manage CCR as well as calcu-

late CVA’s in line with financial reporting standards when dealing with counterparties that oper-

ate or are publicly traded in such market conditions. 

1.3  RESEARCH QUESTION 

The research question of the paper is formulated as an attempt to resolve the obsta-

cles/limitations discussed in the problem statement above. The research paper thus aims to an-

swer the question of whether structural models using financial statement information provide 

consistent and reliable estimates of the probability of default.  

1.4  RESEARCH OBJECTIVES 

The objective of the research is to explore and critically analyse the various methods and struc-

tural models on which the probability of default can be calculated from financial statement in-

formation. Using these models the research aims to estimate the probability of default for vari-

ous companies in the South African market over time. The objective is thus to determine wheth-

er these models provide a realistic and consistent estimate for the probability of default.  
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1.5 RESEARCH BENEFITS 

Obtaining a structural model that accurately and consistently estimates risk-neutral default 

probabilities from financial statement information and market data would mean that there is a 

relatively simplistic alternative available to modelling default. Such a model would then also nat-

urally provide a manner in which to model CVA and CCR amongst other measures in providing 

information regarding the credit risk of a particular firm or entity.  

Moreover, the structural model uses financial statement and market data that are readily availa-

ble. This means that the structural models could potentially be used to provide accurate and 

consistent estimates of the risk-neutral probability of default even where bond and CDS spread 

market data are not readily available for the counterpart entity being evaluated in the measure-

ment of CCR. This is particularly useful when dealing with counterparties who operate in mar-

kets where CDS and bond spread data is not available but rather limited market and financial 

statement information is available. An example would be developing markets such as Africa. 

1.6 RESEARCH DESIGN / CHAPTER OVERVIEW 

The research paper has both quantitative and qualitative aspects. The qualitative aspect is the 

review of the various models and methods for inferring or estimating the default probabilities. 

The research focus of the paper is more specifically on the structural models that use market 

and financial statement information in order to estimate or infer the probability of default. Chap-

ter 1 aims to serve as an introduction discussing the background/rationale as well as the context 

and need for the research. 

Chapter 2 of the report contains an outline of the literature that is relevant to the applications 

and need for estimates of probabilities of default along with the theoretical development of the 

various methods available for estimating the probability of default. Furthermore, the empirical 

analysis of previous applications of structural models is also discussed including the South Afri-

can context. 

Chapter 3 then provides the methodology followed in order to obtain the default probabilities of 

various companies in the South African market over time, for various structural models. The 

methodology describes how structural models in estimating the probability of default use finan-

cial statement information and market data. 

Chapter 4 follows by reviewing the results obtained by following the methodology set out in 

chapter 3. The Merton (1974) and Delianedis and Geske (1998) class of structural models were 

applied to various companies in the South African market over time in order to compare the re-

sults of the probability of default estimated from the various structural models.  
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These default probabilities are then compared against the Bloomberg probability of default from 

the proprietary Bloomberg issuer risk model as well as the results of previous studies on the 

South African market. These comparisons are used in order to provide an indication of whether 

structural models provide a useful estimate of default probabilities that can be used for deriva-

tive valuation, CVA compliance and credit risk management. 

A summary of the overall results and outcomes of the research along with the overall conclusion 

are presented lastly in Chapter 5. This also includes the scope and limitations of the investiga-

tion along with recommendations for further research. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

In this chapter, the review of the relevant literature regarding the probability of default and struc-

tural models is discussed and analysed in detail. Firstly, a review of the changes in financial re-

porting standards and regulations that necessitate the need for estimating the probability of de-

fault is presented.  

Thereafter the ubiquitous methods of the inference of default probabilities from bond prices and 

CDS spreads market data are discussed and analysed in detail along with inferring default 

probabilities from historical data. The literature review also importantly distinguishes real-world 

and risk-neutral probabilities of default. The relationship between corporate bond spreads and 

credit default swap spreads is also discussed.  

Moreover, the literature review explores the theoretical and conceptual basis as well as practical 

implementation of structural models that infer or estimate default probabilities from market and 

financial statement information. 

 2.2 CREDIT VALUATION ADJUSTMENTS 

Traditionally, the mark-to-market (MTM) value of a derivative contract was determined by dis-

counting cash flows using the LIBOR curve or country equivalent. However, since the global 

financial crisis of 2008, accounting and regulatory bodies in the form of IFRS 13 and Basel 3, 

have recognized the need for true MTM value of a transaction to incorporate the possibility of 

losses arising from default. Credit Value Adjustment (CVA) / Debit Value Adjustment (DVA) rep-

resent the market value of the possibility of loss. The CVA moreover is an objective quantifica-

tion of Counterparty Credit Risk (CCR) (Bloomberg Treasury and Risk Management, 2015). 

CVA/DVA is thus the measure used by accounting and regulatory bodies in the attempt to 

measure credit risk more accurately and provide price transparency in the wake of the 2007 

credit crisis. 

IFRS 13 requires that CCR be incorporated when determining the fair value of OTC derivatives. 

However, IFRS 13 does not prescribe an exact valuation method to quantify the adjustments 

made to the valuation of the derivative position. Thus in practice various methods are applied to 

quantify CVA where various factors may influence the method an entity chooses to apply. Cost 

and availability of technology and input data required to model complex credit counterparty risks 

are but a few of the factors that may influence the method a firm chooses to quantify CVA. 

(Ernst & Young, 2014).  
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Two different methods, Potential Future Exposure (PFE) based methods and Current Exposure 

based methods, have become the prevailing methods of choice for entities over time (Bloom-

berg Treasury and Risk Management, 2015). PFE based methods use Monte Carlo simulations 

to create a distribution of future values of the future MTM value of a derivative using market da-

ta. CVA/DVA is determined by applying both counterparties default probabilities to the distribu-

tion of future values of the derivative. PFE based methods are widely regarded as the most 

quantitatively complex and accurate method.    

Alternatively, Current Exposure based methods determine CVA/DVA based only on current 

market information available such as interest rate or forward curves. Audit firms have orated 

that Current Exposure based methods, although practically easier to implement, in certain cir-

cumstances do no accurately reflect the market value of CCR (Numerix, 2012).   

CVA significantly changes the manner in which derivative valuation is viewed as CVA essential-

ly invalidates certain underlying assumptions behind risk-neutral valuation in terms of market 

completeness and availability of a hedge to create a riskless portfolio (Numerix, 2012).  Given 

certain simplifying assumptions, Gregory (2012a) shows that where risk free valuation is possi-

ble, and the probability of default and exposures are independent, it is possible to derive the fol-

lowing equation for CVA:  

 
𝐶𝑉𝐴 ≈ (1 − 𝑅𝑒𝑐) ∑ 𝐷𝐹(𝑡𝑖)𝐸𝐸(𝑡𝑖)𝑃𝐷(𝑡𝑖−1, 𝑡𝑖) 

𝑚

𝑖=1
 

(2.1)       

Where (1 − 𝑅𝑒𝑐) is the loss given default, 𝐷𝐹 is the relevant discount factor, 𝐸𝐸 represents the 

expected exposure in the period and 𝑃𝐷 is the marginal probability of default in the relevant time 

horizon (Gregory, 2012a:243). Furthermore, IFRS 13 requires that valuation techniques maxim-

ise the use of observable inputs and minimize the use of unobservable inputs, thus IFRS 13 

would generally require the use of observable market credit spreads where available (Ernst & 

Young, 2014). Thus, current market observable credit spreads are preferred to historical or 

blended data as sources of credit risk data for measuring CVA.  

The probability of default is a major determinant in the accurate quantification of CVA/DVA as 

well as effectively measuring and managing counterparty credit risk. IFRS 13 reiterates the evi-

dent need for a parsimonious procedure to determine accurately the probability of default, and 

hence quantification of CVA and improved credit risk management.  
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2.3 HISTORICAL DEFAULT PROBABILITIES 

Real-world or physical default probabilities are determined from analysis of historical default da-

ta usually published by rating agencies. Vassalou and Xing (2004) note that the biggest disad-

vantages of the historical approach is that historical accounting data provides no information 

regarding future expectations of the firm or volatilities of the firm’s assets.  

2.3.1 Credit ratings 

Credit rating agencies are in the business of providing an opinion or measure around the credit 

worthiness of a particular financial instrument or issuer. Rating agencies thus provide a meas-

ure of the likelihood that a particular issuer or instrument will not be able to meet the financial 

obligations of the contract. The three largest credit rating agencies are Fitch, Moody’s and 

Standard & Poor’s (S&P) (Langohr and Langohr, 2008).   

Moody’s (2014) defines the credit rating as “an assessment of the ability and willingness of an 

issuer of fixed-income securities to make full and timely payment of amounts due on the security 

over its life.” 

Table 2.1: Moody’s Global scale ratings descriptions 

Aaa Obligations rated Aaa are judged to be of the highest quality, subject to the lowest 
level of credit risk. 

Aa Obligations rated Aa are judged to be of high quality and are subject to very low 
credit risk. 

A Obligations rated A are judged to be upper-medium grade and are subject to low 
credit risk. 

Baa Obligations rated Baa are judged to be medium-grade and subject to moderate 
credit risk and as such may possess certain speculative characteristics. 

Ba Obligations rated Ba are judged to be speculative and are subject to substantial 
credit risk. 

B Obligations rated B are considered speculative and are subject to high credit risk. 

Caa Obligations rated Caa are judged to be speculative of poor standing and are subject 
to very high credit risk. 

Ca Obligations rated Ca are highly speculative and are likely in, or very near, default, 
with some prospect of recovery of principal and interest. 

C Obligations rated C are the lowest rated and are typically in default, with little pro-
spect for recovery of principal or interest. 

Source: Moody’s Investors Service 2014:5 

Table 2.1 summarizes the various credit ratings and meanings issued by Moody’s.   
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The credit grade of the particular instrument (usually bonds) or issuer is even further classified 

into investment grade, which is Baa and above for Moody’s, and speculative grade, which com-

promise the class of rating scores Ba and below (Langohr and Langohr, 2008).  Moody’s also 

have national long term ratings designed for different countries which provide an indication of 

the creditworthiness of the issuer or obligation relative to other domestic issuers within the coun-

try (Moody’s, 2014). The last two letters in national ratings indicate the country of the issuer. 

Rating agencies typically then use average cumulative default rates as per rating class in order 

to determine historical default probabilities within each rating class. For investment grade bonds 

the probability of default in a given year is an increasing function, this is because the bond issu-

er is initially considered creditworthy, however as more time elapses, the greater the chance of 

deterioration in the creditworthiness of the issuer. The converse is true for speculative grade 

bonds, as the longer the issuer survives, it becomes more likely that the issuer will show im-

proved financial prospects and have overcome the initial questionable creditworthiness. (Fons, 

1994).  

 2.3.2 Hazard rates 

The default probabilities referred to above are known as the unconditional default probability. It 

is the probability of defaulting during any given year as seen at time zero. The probability of de-

fault during any given year conditional on no default in any prior period is referred to as the con-

ditional default probability or hazard rate, also known as default intensities (Malz, 2011). 

The hazard rate λ(t) at time t is defined such that  λ(t)∆t   is the probability of default between 

time t and 𝑡 + ∆t  under condition that no default has occurred prior to time t . If V(t)  is the cu-

mulative probability of the firm surviving until time t and Q(t)  is the probability of default by time 

t, Hull (2012: 523) derives the following:   

 𝑉(𝑡) =  𝑒∫ 𝜆(𝜏)𝑑𝜏
𝑡

0  (2.2)       

 𝑄(𝑡) = 1 −  𝑒𝜆 ̅(𝑡) (2.3) 

Where 𝜆 ̅(𝑡) is the average hazard rate or default intensity in the interval [0,t].   

2.3.3 Risk-neutral default probabilities vs. real-world default probabilities 

There is an important distinction to be made between real-world or historical default probabilities 

and risk-neutral default probabilities. Hull (2012: 528-529) defines risk-neutral probabilities of 

default as those determined where expected losses can be discounted at the risk-free rate in a 

risk-neutral world as per the risk-neutral valuation principle. Contrastingly, real-world default 

probabilities are those implied from historical data and as such sometimes referred to as ‘physi-

cal probabilities’.  
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A commonly noted feature of credit markets is the large discrepancy between default probabili-

ties calculated from historical data and default probabilities implied from bond prices or credit 

default swaps (Hull, Predescu and White, 2004). Altman (1989) was one of the first researchers 

to note this discrepancy and showed that, even after considering the impact of default, an inves-

tor could earn significantly more than the risk-free rate on average by holding corporate bonds.  

Hull (2012: 528-529) suggests that bond traders do not base their price solely on the actual 

probability of default and build in an extra return to compensate for additional risks they are 

bearing in the trading position. The excess returns observed on corporate bonds are also af-

fected by additional factors such as tax differences, liquidity and recovery rates (Hayne, 2004).  

Hull (2012: 528-529) along with Amato and Remolona (2003) proposes that the most important 

reason for the difference in return, is the non-systematic risk associated with each bond as bond 

defaults do not occur independently and non-systematic risk is difficult to ‘diversify away’ from. 

This can be seen as default probabilities move very well together in different periods according 

to macro-economic conditions. Thus, bond traders may earn additional return for bearing both 

systematic and non-systematic risk, contributing to the hefty difference in actual default proba-

bilities and risk-neutral default probabilities.  

The use of risk-neutral or actual default probabilities in the credit analysis depends on the pur-

pose of the analysis. Real-world default probabilities should be used in profit and loss scenario 

analysis and determining banking capital requirements (Hull et al., 2004:1). Gregory (2012a: 

198) describes risk-neutral probabilities of default as estimates of the market price of default 

rather than estimates of actual default probabilities. 

IFRS 13 provides that fair value is a market-based measurement requiring that risk-neutral de-

fault probabilities be used in the fair value measurement of an OTC derivative (Ernst & Young, 

2014). Furthermore, this implies that risk-neutral default probabilities should be used when valu-

ing credit derivatives and estimating the potential impact of default on the pricing of instruments 

(Credit Value Adjustment/ Debit Value Adjustment). 

2.4 DEFAULT PROBABILITIES FROM CREDIT SPREADS 

Corporate bonds on average trade at higher yields than similar risk free government or treasury 

bonds. This yield spread is partly due to the credit risk of corporate bonds and thus often re-

ferred to as the credit spread (Huang and Huang, 2003).   
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2.4.1 Default probabilities from bond prices 

Under the assumption that the yield spread on the corporate bond is only owing to the compen-

sation for the possibility of default, Hull et al. (2004) shows that the hazard rate or default inten-

sity can be estimated from bond prices as follows: 

 𝜆̅ =  
𝑠

1−𝑅
    (2.4) 

Where s is the yield spread of the corporate bond over similar risk free bond and 𝑅 is the ex-

pected recovery rate.  The assumption is far from realistic as in practice many other factors con-

tribute to the credit spread such as liquidity, embedded options and tax treatments of the in-

strument (Huang and Huang, 2003). 

A key determinant of default probabilities from bond prices is the meaning of the risk-free rate or 

risk free bond against which the credit or yield spread is determined. Duffee (1996) noted that 

the treasury rate is lower than similar very low credit risk rates for a variety of factors and that 

the treasury rate no longer provided a suitable proxy for the risk-free rate.  The tendency of 

treasury rates to be lower than other rates has led many market participants to regard the swap 

rate as an improved proxy for the risk-free rate (Hull et al., 2004: 3).  

The Credit Default Swap (CDS) market provides a manner in which the benchmark risk-free rate 

used by participants in credit markets can be estimated. CDS are considered less influenced by 

non-default factors and thus able to provide a good proxy of the risk-free rate when analysing 

default risk (Wang, 2006). 

The other key variable in determining default probabilities from bond prices as per equation 2.4 

is the expected recovery rate.  The expected recovery rate for a bond is usually expressed as 

the bond’s market value shortly after defaulting, as a percentage of its face value (Hull, 2012: 

523). The expected recovery rate is thus the percentage of the original investment that an inves-

tor expects to receive in the event of default.  

There are varieties of factors that influence the expected recovery rate for a bond however, 

Fons (1994) argues that the chief determinant of the expected recovery rate is the bond’s sen-

iority within the capital structure of the firm. Moody’s estimates the recovery rates of bonds by 

seniority, based on bond prices one month after default. The estimation of default probabilities 

from bond prices and yield spreads thus requires some form of a subjective or historical esti-

mate for the expected recovery rate. 

In most studies surrounding the extracting of default probabilities from bond prices and credit 

spreads, such as the works of Jarrow and Turnbull (1995) along with Duffie and Singleton 

(1999), only plain vanilla bonds are considered in the study as inferring default probabilities from 

bonds with embedded options or floating rates become significantly more complex.   
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Estimating default probabilities for a firm from the bonds it has issued, becomes problematic for 

firms that issue a variety of types of bonds in addition to the plain vanilla type bonds. 

Another difficulty encountered by this approach is the inability to separate, easily, the portion of 

the credit spread owing to default and the part owing to the rate of recovery. Furthermore, the 

findings of Elton et al. (2001) along with Delianedis and Geske (2001) indicate that default risk 

only accounts for a small proportion of the yield spread and that the greater part of the credit 

spread can be attributed to fiscal and systematic risk effects. This is consistent with the reason-

ing for the significant difference between actual default probabilities and risk-neutral default 

probabilities described in the previous section.  

 
2.4.2 Credit Default Swap Spreads 

A CDS is a popular credit derivative that provides insurance against the risk of default by a par-

ticular firm or for a specified corporate bond known as the reference entity and reference obliga-

tion respectively.  The buyer of the insurance has the right to sell the bonds of the company at 

face value to the insurance seller, should a credit event occur. The total value of the bonds that 

can be sold is referred to as the notional principle of the CDS (Wang, 2006). 

A key aspect of a CDS contract is the definition of the credit event that triggers the CDS. Most 

typically, a credit event defined in a CDS contract includes bankruptcy, failure to make payment 

and any form of restructuring of debt obligations by the reference entity that is adverse to credi-

tors (Liang et al., 2010). Typically, the buyer of the CDS makes periodic payments to the seller 

until the end of the life of the contract or a credit event occurs. 

A vanilla or plain CDS contract usually specifies two potential cash flow streams in the form of a 

fixed premium leg and contingent leg (Wang, 2006).  The value to the CDS contract to the buyer 

of default insurance is thus the difference in expected present value of these two potential cash 

flow streams. Liang et al. (2010) provides the following equations for valuing a CDS contract: 

 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐶𝐷𝑆 = 𝐸[ 𝑃𝑉 (𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡 𝑙𝑒𝑔)] −  𝐸[ 𝑃𝑉 (𝐹𝑖𝑥𝑒𝑑 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 𝑙𝑒𝑔) ] (2.5)  

Where: 

 𝐸[ 𝑃𝑉 (𝐹𝑖𝑥𝑒𝑑 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 𝑙𝑒𝑔) ] =  ∑ 𝐷(𝑡𝑖)𝑞(𝑡𝑖)𝑆𝑑 + ∑ 𝐷(𝑡𝑖){𝑞(𝑡𝑖−1) − 𝑞(𝑡𝑖)}𝑆×
𝑑𝑖

2⁄     

 𝐸[ 𝑃𝑉 (𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡 𝑙𝑒𝑔) ] = (1 − 𝑅) ∑ 𝐷(𝑡𝑖){𝑞(𝑡𝑖−1) − 𝑞(𝑡𝑖)}    

Where 𝐷(𝑡) is the relevant discount rate at time 𝑡, 𝑞(𝑡) is the survival probability at time 𝑡, 𝑆 rep-

resents the annual premium and 𝑑 is the accrual days.  
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The CDS spread is defined as the total of payments made in a year as a percentage of the no-

tional principal. The spread, 𝑆, is set initially so that the value of the CDS is zero at origination of 

the contract (Liang et al., 2010).   

 
𝑆 =  

(1 − 𝑅) ∑ 𝐷(𝑡𝑖){𝑞(𝑡𝑖−1) − 𝑞(𝑡𝑖)} 

∑ 𝐷(𝑡𝑖)𝑞(𝑡𝑖)𝑑𝑖 + 𝐷(𝑡𝑖){𝑞(𝑡𝑖−1) − 𝑞(𝑡𝑖)} 𝑑𝑖
2

⁄
 

(2.6)  

Thus in order to value CDSs, estimates of risk-neutral default probabilities and the recovery rate 

are required for the reference obligation. Alternatively, Duffie (1998) shows that the asset-swap 

spread and the term structure of risk-free rates can be used together in order to estimate the 

CDS spread. Under certain assumptions the CDS spread and the par asset-swap spread are 

exactly the same for small default probabilities, however it is dangerous to assume that the as-

set-swap spread is a reasonable proxy for the CDS spread in the case of premium discount 

bounds (Duffie, 1998). 

The CDS can be used to hedge a position in a corporate bond and following no arbitrage argu-

ments, the n-year corporate bond yield spread or credit spread should be approximately equiva-

lent to the n-year CDS spread otherwise an arbitrage opportunity exists (Hull, 2012: 550). The 

work of Hull (2012), Duffie (1998) and Wang (2006) indicates that bond market spreads should 

give a roughly similar spread to those obtained from the CDS market.  

Given the pricing methodology for CDS contracts as outlined above, it can be seen that risk-

neutral default probabilities can be implied from market CDS quotes. This is achieved in a simi-

lar manner to how implied volatility is determined from prices of actively traded options (Hull, 

2012: 554). Additionally, the CDS spread provides a good indication of the creditworthiness of 

the counterparty from the market participant’s view. However, CDS market data is not readily 

accessible or available for most smaller or private entities and CDS quotes may include liquidity 

premiums due to low trading volumes. (Ernst & Young, 2014). 

2.5 STRUCTURAL MODELS OF DEFAULT PROBABILITY 

Many early approaches to modelling credit risk took a statistical route in order to distinguish de-

faulters from non-defaulters such as the discriminant analysis approach of the Altman-Zeta 

model (Trujillo and Martin, 2005). In 1974, Robert Merton introduced a new option-theoretic ap-

proach to credit risk modelling and measurement based on ideas and formulations that were 

implicit in the Black and Scholes (1973) option-theoretic framework.  

The class of models that has developed around the Merton (1974) approach is presently known 

as the class of ‘structural models’. The basis of the structural approach is that the debt and equi-

ty of a firm can be regarded as contingent claims on the firm’s assets.  
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The value of the debt and equity of a firm thus depends on the value of its assets as well as the 

forward-looking expectation surrounding the value of those assets.   

2.5.1 Merton (1974) model 

The firm value in the context of the Merton (1974) model is the economic value of the total as-

sets of the firm. As with all structural models, the Merton model begins with a specification of a 

stochastic process for the firm value. The Merton model assumes that the firm value follows a 

geometric Brownian motion: 

 d𝑉𝑡 =  𝜇𝑉𝑡d𝑡 +  𝜎𝑉𝑡d𝑊𝑡 (2.7)  

Where  𝑉𝑡 is the firm value at time 𝑡, 𝜇 is the drift of the firm value, and 𝜎 is the volatility of the 

firm value. The second assumption of the Merton model is that the capital structure of the firm 

consists solely of equity and debt. Furthermore, the debt is assumed to be a single issue of ze-

ro-coupon form where the face value of the debt is denoted by 𝐷 and the maturity date is 𝑇.   

To complete the model, further assumptions regarding the conditions that trigger default and the 

costs incurred in the event of default are required. The Merton (1974) model assumes that de-

fault can only occur at time 𝑇 when the debt becomes due and no covenants can trigger default 

before time 𝑇. Furthermore, debt holders are assumed to have absolute priority over equity 

holders in the event of default and there are no frictional market costs associated with liquida-

tion in the event of default.  

Under these assumptions Merton (1974) shows that holding the risky debt of the firm is equiva-

lent to holding a portfolio consisting of a long position in default risk free bond paying 𝐷 at time 

𝑇 and short a put on the firm’s assets with strike 𝐷 and maturity 𝑇.  The following decomposition 

follows naturally: 

 𝐵∗ = 𝐵 − 𝑃 (2.8) 

Where  𝐵∗ represents the value of risky debt, 𝐵 is the value of riskless debt and 𝑃 is the value of 

the put on the firm’s assets. This decomposition importantly shows that the spread on the risky 

debt is completely determined by the value of the put, 𝑃 (Smit, Swart and Van Niekerk, 2003). 

The value of the put can be determined using the Black-Scholes formula since all the conditions 

of Black-Scholes have been met in the assumptions. Merton (1974) expresses the value of the 

put slightly differently to the standard Black-Scholes formula: 

 𝑃 = 𝑒−𝑟(𝑇−𝑡) 𝐷. 𝑁(−𝑑 + 𝜎√𝑇 − 𝑡) − 𝑉𝑡𝑁(−𝑑)    (2.9) 
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Where: 

 
𝑑 =  

1

𝜎√𝑇 − 𝑡
 [ln(1

𝐿 ⁄ ) + 
1

2
𝜎2 (𝑇 − 𝑡)] 

 

 
𝐿 =  

𝑒−𝑟(𝑇−𝑡) 𝐷

𝑉𝑡
 

 

In addition, 𝑁( . ) is the standard normal distribution function. The risk-neutral probability of de-

fault is easily extracted as the probability that 𝑉𝑡 < 𝐷. From Black-Scholes formula, this is simply 

the probability that the put 𝑃 finishes ‘in the money’. Smit et al. (2003) show that the risk-neutral 

probability of default is given by: 

 𝑁( −𝑑 +  𝜎√𝑇 − 𝑡 ) (2.10) 

The actual or real-world probability is given similarly as the probability that 𝑉𝑡 < 𝐷.  However, 

the process for the firm value has drift 𝜇 as opposed to drift in the risk-neutral world where the 

risk-free rate, 𝑟, is the drift of the firm value process. The actual probability of default will typical-

ly be less than risk-neutral probabilities since 𝜇 >  𝑟 usually. The higher risk-neutral default 

probability can be interpreted as comprising of actual default probability and a premium for un-

certainty of timing and magnitude of the default (Sundaran and Das, 2010).   

Another useful feature of the Merton (1974) model is that is allows for estimation of expected 

recovery rates in the risk-neutral setting. Under the Merton framework, Smit et al. (2003) provide 

the following closed form expression for the expected recovery rate: 

 1

𝐷
𝐸𝑇[𝑉𝑇| 𝑉𝑇 < 𝐷] =   𝑒−𝑟(𝑇−𝑡) (

𝑉𝑇

𝐷
) (

𝑁(−𝑑)

𝑁( −𝑑 +  𝜎√𝑇 − 𝑡 )
)   

(2.11) 

This feature is extremely useful since both CDS spreads and bonds prices require an estimate 

of the recovery rate to estimate default probabilities. Although the model is theoretically very 

appealing, since it provides a simplistic model for the credit spread along with default probability 

and recovery rates, the model encounters a number of major challenges in practical implemen-

tation. The first of these challenges is that both the firm value  𝑉𝑡 and its volatility 𝜎 are unob-

servable in the market. Wang and Suo (2006) argue that in the Merton model, the firm’s equity 

is treated as a European call option on the firm’s assets and hence the firm value and volatility 

should satisfy the following set of simultaneous equations:  

 𝐸𝑇[𝑉𝑇 , 𝜎] = 𝑉𝑇 𝑁(𝑑) − 𝑒−𝑟(𝑇−𝑡) 𝐷 𝑁(𝑑 − 𝜎√𝑇 − 𝑡 ) (2.12) 

& 
𝜎𝐸 = 𝜎𝑉𝑇

𝑁(𝑑)

𝐸𝑇
 

(2.13) 
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The relationship between the equity and asset volatility only holds instantaneously and the algo-

rithm forces stochastic variables to be constant, where in practice the hedge ratio and leverage 

ratio are not stable enough to provide meaningful estimates (Holman et.al, 2011). Crosbie and 

Bohn (2003) illustrate that the procedure biases the probability of default in exactly the wrong 

direction as increased leveraging will drive down asset volatility and under predict default. 

Vassalou and Xing (2004) describe a more complex iterative procedure to solve for the asset 

volatility. Alternatively, Duan (1994) describes an intricate maximum likelihood approach based 

on observed market equity or bond prices in order to solve the unknown parameters relating to 

the firms value and volatility.  A distinct advantage of the maximum likelihood approach is that it 

directly provides an estimate of the real-world drift parameter, 𝜇, of the unobserved asset value 

process under the physical probability measure (Wang and Suo, 2006).  

The second major issue encountered with implementing the Merton (1974) model is that the 

capital structure assumption is too simplistic. In practice, capital structures consist of many is-

sues of debt outstanding, with varied coupons, maturities and subordination structures 

(Sundaran and Das, 2010). In order to simplify reality, Delianedis and Geske (1998) suggest a 

zero-coupon bond that has an equivalent duration of the existing structure replacing the capital 

structure. An alternative in the popular Moody’s KMV vendor model is to use the aggregate of 

short term and long-term liabilities to estimate the face value of the zero-coupon debt 𝐷.  

2.5.2 Delianedis and Geske (1998) model 

As opposed to simplifying capital structures to fit within the existing Merton model framework, 

Sundaran and Das (2010) suggest that extending the theoretical structure of the model to incor-

porate more complex debt structures is the more economically correct manner in which to solve 

the problem of capturing the effects of more complex capital structures.   

Delianedis and Geske (1998) (D&G) provide extensions of the Merton model that allows for 

more complex capital structures. These models allow for multiple debt issues of varying cou-

pons, maturities and seniority or subordination (Chen, 2013). 

In the most simple extension of the Merton Model, D&G (1998) allow for two tranches of zero-

coupon debt in the firm’s debt structure with face values 𝐷1 and 𝐷2 and maturities 𝑇1 and 𝑇2 re-

spectively where 𝑇1  <  𝑇2.   Since there are now two dates at which equity holders may choose 

to default the D&G model thus involves a compound option pricing approach (Sundaran and 

Das, 2010).  

Delianedis and Geske (1998) further illustrate that at the first maturity date 𝑇1, the firm is solvent 

if: 
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 𝑉𝑇1
> 𝐷1 + 𝐵2,𝑇1

 (2.14) 

Where 𝑉𝑇1
 is the value of the firm’s assets at 𝑇1, 𝐷1 is the face value of the first tranche of debt 

at 𝑇1 and 𝐵2,𝑇1
 is the value of the second tranche at 𝑇1. If the firm is solvent, the Delianedis and 

Geske (1998) model then assumes that the first tranche of debt will be refinanced with equity. 

The model may be implemented under the assumption that refinancing is not allowed however, 

this adversely affects the second tranche of debt and is less realistic (Sundaran and Das, 2010).   

The condition for solvency provided by Delianedis and Geske (1998) defines a critical cut-off 

value 𝑉∗, for the value of the firm at 𝑇1, which is equivalent to the strike price of the first option in 

a compound option (Chen, 2013). The critical cut-off value or strike price of the first option is 

given by: 

 𝑉∗ =  𝐷1 + 𝐵2,𝑇1
 (2.15) 

Whilst the strike price for the second option at date 𝑇2 is simply the face value of the second 

tranche of debt, 𝐷2 (Sundaran and Das, 2010). Delianedis and Geske (1998) shows that using 

the strike prices of the two options as described above, the price of equity today can be treated 

as the value of the compound option with such exercise prices and provides the following solu-

tion: 

 𝐸𝑇 = 𝑉𝑇𝑁2[𝑑1 + 𝜎 √𝑇 − 𝑡; 𝑑2 + 𝜎 √𝑇 − 𝑡; 𝜌] − 𝐷2𝑒−𝑟(𝑇2−𝑡) 𝑁2[𝑑1; 𝑑2; 𝜌]

− 𝐷1𝑒−𝑟(𝑇1−𝑡) 𝑁(𝑑1) 

(2.16) 

Where: 

 

𝜌 =  √
𝑇1 − 𝑡

𝑇2 − 𝑡 
 

 

 

𝑑1 =  
ln (

𝑉𝑡
𝑉∗) + (𝑟 + 1

2 ⁄ 𝜎2)(𝑇1 − 𝑡)

𝜎√𝑇1 − 𝑡
 

 

 

𝑑2 =  
ln (

𝑉𝑡
𝐷2

) + (𝑟 + 1
2 ⁄ 𝜎2)(𝑇2 − 𝑡)

𝜎√𝑇2 − 𝑡
 

 

And 𝑁2[. ] is the cumulative bivariate standard normal distribution with correlation coefficient  𝜌.   

 

From the compound option model, Delianedis and Geske (1998) provide three risk-neutral 

probabilities as follows: 
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 risk neutral short run PD = 1 − 𝑁(𝑑1) (2.17) 

 
risk neutral long run PD = 1 −  

𝑁2[𝑑1; 𝑑2, 𝜌]

𝑁(𝑑1)
 

(2.18) 

 risk neutral total PD = 1 − 𝑁2[𝑑1; 𝑑2; 𝜌] (2.19) 

The short run default probability represents the probability of default at 𝑇1. The total default 

probability represents the probability of the firm defaulting at either 𝑇1 or 𝑇2. The long-term 

default probability is the probability of default at 𝑇2 conditional on not having defaulted at 𝑇1 and 

is thus also refered to as the forward default probability (Chen, 2013). 

The D&G model has the appealing feature of being able to capture both short-term and long-

term default characteristics of the firm simultaneously. Sundaran and Das (2010) argue that 

there are many firms with poor quality yet, conditional on survival of initial financial difficulty, 

have reasonable longer term financial prospects and that the forward default probability of the 

D&G model is likely to reflect these key features.  

Although the model appears to be a relatively simply extension of the Merton framework, 

considerable additional complexity arises in solving for the unobservable parameters of process 

for value of the firm.  Delianedis and Geske (1998) shows that the unobservable parameters  

{𝑉𝑡, 𝜎, 𝑉∗} can be estimated from the system of equations 2.15, 2.16 and 2.20 below. 

 
𝜎𝐸 = 𝜎𝑉𝑇

𝑁(𝑑1)

𝐸𝑇
 

(2.20)  

The procedure for estimating these unobservable parameters is subject to the same 

weaknesses as with the case of Merton. The equity and asset volatility relationship is still 

instantaneous as described by Crosbie and Bohn (2003), additionally there is the added com-

plexity of a third unobservable variable 𝑉∗, the cut-off value, in the estimation procedure. 

2.5.3 Practitioner models 

One on the most notable implementation of a structural credit risk measurement model is the 

Moody’s KMV (MKMV), Trujillo & Martin (2005) summarizes the MKMV approach in four stages: 

(i) Calculate a default boundary. 

(ii) Estimate asset value and volatility. 

(iii) Calculate the Distance to Default (DD). 

(iv) Map DD into Expected Default Frequency (EDF). 

The first two stages of the MKMV approach are analogous to that of the Merton approach. In the 

first stage, the capital structure is collapsed into a single debt issue or default boundary calcu-

lated as the sum of the short-term liabilities and a fraction of the longer-term liabilities. In the 
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second stage, the asset value and volatility are backed out from observed equity value, volatility 

and capital structures. This is achieved using a proprietary variant of the Black and Scholes/ 

Merton option-pricing model (Crosbie and Bohn, 2003). 

In the third stage the MKMV approach moves away from the Merton approach and defines the 

‘distance to default’ as the number of standard deviations the firm value has to move make be-

fore the firm is in default (Hayne, 2004).  The MKMV approach defines the distance to default δ 

in a simplified manner as shown by Crosbie and Bohn (2003): 

 
𝛿 =  

𝑉𝑡 − 𝐷

𝜎𝑉𝑡
 

(2.21)  

The ratio 𝛿 represents the number of standard deviations the firm is from default. Sundaran and 

Das (2010) illustrate that normalizing the distance in this fashion allows for comparability 

between firms of how far the firm is from default even though the firms may differ substantially in 

other ways.  The final stage uses the estimated ‘DD’ to determine an ‘expected default 

frequency’ (EDF), from a proprietary default database, which represents the likelihood of the 

given firm defaulting over the specified horizon (Hayne, 2004). The MKMV practioner model 

thus uses a blend of market and historical data in a structural framework to estimate the 

probability of default for a given firm.  

Another priopertery model of great use is the Bloomberg issuer risk model.  According to 

Bloomberg (2012) the issuer risk model provides an independent assesment of credit health, 

using market and fundamental data with innovative quantitative models. The bloomberg issuer 

risk model provides one and five year  default probabilities along with implied CDS spreads.  In 

this paper, the Bloomberg issuer risk model is assumed to provide reasonable and consistent 

estimates for default probabilities and can thus be used as stable benchmark for comparison of 

default probabilities estimated by structural models.  

2.5.4 Extensions of the Merton model 

The original Merton model proposes a number of simplifying assumptions in order to apply the 

option-pricing framework, these assumptions however present an over simplified picture of reali-

ty and impose a variety of potential restrictions on the model (Sundaran and Das, 2010). Over 

time, numerous extensions of the original Merton framework have been developed in an attempt 

to address the various limitations of the original Merton Model.  

Trujillo and Martin (2005) cite the most important restriction of the Merton model as the assump-

tion that the firm has only a single issue of outstanding debt and that insolvency can only occur 

when such obligations become due.  Black and Cox (1976) provide one of the earliest exten-

sions of the Merton framework by allowing for default before maturity if the value of the firm falls 
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below an endogenous default barrier. The endogenous default barrier is determined as the val-

ue of the firm under which the managers of the firm are incentivised to default in order to max-

imize the value of the equity (Hayne, 2004). These approaches are known as first-passage 

models.  

The Merton framework assumes that the risk-free rates of interest are deterministic which is a 

clearly unrealistic and limiting assumption since unanticipated changes in the interest rate can 

significantly impact the value of debt (Trujillo and Martin, 2005). Shimko et al. (1993) present a 

generalization of the Merton model to include for stochastic interest rates that follow from the 

model of Vasicek (1977). The Black and Cox (1976) model is also extended to include 

stochastic interest rates in the works of Longstaff and Schwartz (1995) (LS).  Leland and Toft 

(1996) (LT) further extend the approach of Longstaff and Schwartz (1995) by deriving the 

optimal endogenous default value for firms issuing debt of arbitrary maturities and introducing 

tax benefits of debt into the model. 

The Merton model assumes away any dead weight cost of bankruptcy and no potential 

renegotiation of debt is allowed contrary to what is commonly observed. Huang and Huang 

(2003) noted that many firms continue to operate with negative net worth and that implied 

default costs must be extremely high to explain relatively low recovery rates on corporate 

bonds.  Anderson and Sunderason (1996) extend the Merton and D&G frameworks to allow for 

costs of bankruptcy and the possibility of renegotiation of debt. Anderson and Sunderason 

(1996) argue that the presence of these costs and the possibility of renegotiation provides 

equity holders with incentive to participate in strategic debt service and continue to operate with 

negative net worth in certain instances.   

Alexander (2008) shows that emperical evidence suggests that equity returns particularly tend 

to be distributed leptokurtically and heavily skewed with fat tails. Zhou (1997) adresses the 

issue of large tails in returns by modelling the firm value process as a jump-diffusion. 

Zhou (1997) shows that the jump-diffusion process also allows for the recovery rates estimated 

in the model to be naturally stochastic. Furthermore, notable extensions of the Merton 

framework include Collin-Dufresne and Goldstein (2001) (CDG) who note that firms may have 

specific target captial structures and incorporate mean-reverting leverage ratios and stochastic 

interest rates into the model.  

2.6 EMPERICAL PERFORMANCE OF STRUCTURAL MODELS  

The structural model approach makes use of a sound economic basis and more importantly 

makes use of current market prices in its implementation, more specifically information from 

equity markets which tend to be more liquid and informative than credit markets (Sundaran and 
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Das, 2010).  It has been comprehensively shown that the structural model approach not only 

provides a model for default but includes many other useful outputs such as naturally defined 

risk-neutral recovery rates and credit spreads of corporate debt to name a few. 

Arora, Bohn and Zhou (2005) note that although the structural approach provides an appealing 

conceptual and theoretical framework, the practical applicability of many of the generalizations 

and extensions of the Merton model is limited. While emperical evidence is still scarce, more 

and more emperical researchers have started testing these model extensions and 

generalizations.    

2.6.1 Credit spreads  

There have been numerous studies to discern whether structural models are able to explain ob-

served corporate yield spreads. Most notable among these are the works of Huang and Huang 

(2003) and Eom et al. (2004) who provide a comprehensive comparison among several struc-

tural models.  

Huang and Huang (2003) find that the yield spread implied by structural models are substantial-

ly underestimated in comparison to observed yield spreads, especially for short maturities and 

investment grade bonds.  Eom et al. (2004) finds that the Merton (1974) and D&G (1998) mod-

els significantly under predict the yield spread. Furthermore, Eom et al. (2004) shows that the 

extensions of the Merton framework tend to over predict spreads for firms with high leverage or 

volatility with the exception of the LT (1996) model and the structural models appear to over-

state the credit risk of risky bonds while simultaneously underestimating the risk of safer bonds.  

Huang and Huang (2003) explain this mixed performance of the structural models by arguing 

that while default risk can account for a large portion of the credit spread for low-grade debt, the 

default risk only accounts for a small portion of the spread in investment grade debt. The re-

maining portion of the spread is attributed to systematic risk effects (Vassalou & Xing, 2004). 

2.6.2 Default probabilities and credit ratings 

The structural model approach is rarely used in the valuation of different tranches of corporate 

debt and does not facilitate the valuation of most credit derivatives but rather is primarily used 

as an indicator or predictor of distress (Sundaran and Das, 2010). There is substantial evidence 

indicating that structural models perform well in default prediction. 

Wang and Suo (2006) show that when using equity prices as the input to the maximum likeli-

hood estimation procedure of Duan (1994), one-year default probabilities from the original Mer-

ton (1974) model are close to zero for most of the investment grade firms. Alternatively, Wang 

and Suo (2006) find that when using bond prices the estimation process does not converge for 

most firms in the sample.  
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The low default probabilities estimated are consistent with Huang and Huang (2003) since the 

small credit spread for investment grade firms also implies low default probabilities. Hull (2012: 

531) suggests that the Merton model and its extensions provide good rankings of default proba-

bilities which can be transformed into useful real-world or risk-neutral default probabilities using 

a monotonic transformation. Delianedis and Geske (1998) further find that, empirically, the 

compound option approach was able to forecast rating transitions accurately.  

Moreover, Wang and Suo (2006) find that the performance of the Merton model is significantly 

improved when assuming a stochastic interest rate structure. Wang and Suo (2006) find that in 

contrast to the structural models inability to explain credit spreads, the default probabilities from 

the LS and LT models are very close to real world observations. However, Hayne (2004) finds 

that shorter-term default frequencies for these models tend to be underestimated suggesting 

that a jump component should be included in the asset value process. The CDG model with a 

mean-reverting capital tends to over-predict default probabilities largely and is highly sensitive to 

the choice of interest rate parameters (Huang and Huang, 2003).  

Tudela and Young (2003) combine the Merton model with additional financial information to 

form a hybrid model and find that such an implementation is able to provide a strong signal of 

failure or default over a one-year time horizon. Tudela and Young (2003) find default probabili-

ties had a mean of 47.3% for firms that went bankrupt versus 5.4% for those who did not default. 

This importantly shows that the structural model approach is successfully able to distinguish be-

tween defaulting firms from non-defaulters. Using a sample of observed defaults, Sundaran and 

Das (2010) further show that the distance to default metric produced by the structural model ap-

proach can be used to create a cumulative accuracy profile (CAP) that measures the forecast 

validity produced by the distance to default measure within the sample of firms. Depending on 

the specifics of the model and the universe of firms, the structural model approach produces 

accuracy ratios varying from 65 − 90% in default prediction. 

Wang (2006) suggests that the Merton model and its extensions are able to capture the charac-

teristics of the firms’ credit risk adequately, however fail to price corporate bonds owing to the 

additional factors influencing the credit spread. 

2.6.3 South African context 

According to Holman et al. (2011), the South African market provides a rather unique case with 

respect to default estimation as no firm has defaulted on their listed debt.  This would imply a 

historic default probability of zero for any firm, which theoretically cannot be true. 
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Since the classical historical approach to default estimation is not applicable, the works of Smit 

et al. (2003), Venter and Styger (2008) and Holman et al. (2011) are amongst the most notable 

studies to determine whether the structural approach provides a viable alternative to estimating 

default probabilities in the South African market.  

In a study of a range of 20 South African companies, rated AAA to BBB, Smit et al. (2003) found 

similarly to research conducted in the rest of the world that the Merton model produced spreads 

and hence default probabilities that were too small. The study of Smit et al. (2003) showed 

clearly that the credit spreads and hence default probabilities increased with asset volatility and 

leverage ratios. More notably the study found that when applying the model of Shimko et al. 

(1993) by allowing for stochastic interest rates, the results produce credit spreads that match 

observed spreads much better and the model is more responsive to low volatilities and high 

leverage ratios. 

Holman et al. (2011) estimated default for the top 42 firms on the Johannesburg Stock Ex-

change (JSE), excluding financial firms, using the Merton (1974) framework. The study interest-

ingly finds that the distance to default as produced by the Merton model is so large that it sug-

gests South African firms may have sub-optimal capital structures otherwise the Merton model 

is not adequately reflecting default risk. Holman et al. (2011) suggests that the low levels of lev-

erage amongst South African firms may be due to limited growth opportunities and hence firms 

do not need to issue debt in order to finance expansion. Furthermore, it is this low level of lever-

age amongst South African firms that is responsible for significant under prediction of default 

probabilities. This is evidenced in the study of Holman et al. (2011) as the only two firms that 

produced default probabilities significantly different to zero, were significantly more leveraged 

than the remaining firms in the sample. 

Holman et al. (2011) further evaluates whether there is a relationship between the credit ratings 

of the firms and the default probabilities as calculated by the Merton model. Contrary to Hull 

(2012), the study found no apparent relationship between the Merton model default rankings 

and the credit ratings of the firms as issued by Moody’s or Fitch, with some firms having better 

credit ratings exhibiting larger default probabilities than poorly credit rated firms. 

In a unique application of the structural approach, Venter and Styger (2008) modify the Merton 

model in order to make it more readily applicable to banking firms within South Africa. Venter 

and Styger (2008) shows that the assumptions of the Merton (1974) regarding the treatment of 

the firms’ liabilities make it unsuitable for a direct application to the banking sector in South Afri-

ca.  
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In essence, the modification made by Venter and Styger (2008) assumes that both assets and 

liabilities of the firm follow a geometric Brownian motion and are correlated.  Under this modified 

assumption the call option view on the equity of the firm may be replaced by suitable swap op-

tion views. Venter and Styger (2008) fit this model to three leading banks in South Africa and 

find that the implied buffer capital levels and failure probabilities produced from the models pro-

vide useful and reasonable comparative risk measures.  

The empirical studies suggest that the Merton (1974) model should be used as a limited source 

of information regarding credit risk in South Africa. However, it has been shown that the exten-

sions of the Merton model can be used to provide more useful and realistic information regard-

ing the credit risk of firms in South Africa. 

2.7 SUMMARY 

It has been comprehensively shown that the probability of default plays an essential role in mul-

tiple facets of the credit risk management process. The default probability is clearly not only a 

major determinant in default prediction and measurement of CCR but is also critical to perform-

ing required regulatory valuation adjustments to derivatives in the form of CVA.  

Estimating default probabilities can be separated into three distinct approaches in the forms of 

the historical approach using historical default data or credit ratings, estimating default probabili-

ties from observed bond and CDS spreads and lastly, the structural model approach that uses 

market and financial statement data.  

IFRS 13 dictates that default probabilities from observed bond or CDS spreads should be used 

for CVA quantification when available as the CVA is intended to be a market based measure. 

Bond and CDS market data are however not always readily available since the number of firms 

whose debt is traded in organised markets is substantially lower than the number of firms whose 

security prices are quoted in such markets. The structural approach thus provides a valuable 

alternative to quantifying CVA where bond and CDS market data is not available as the models 

produce estimates of default using widely available security market data and publicly available 

financial statement information. Furthermore, the use of observed equity prices in the structural 

approach is consistent with IFRS that CVA is a market-based measure and the approach is thus 

preferred to the historical approach since the historical approach does not include market ex-

pectations surrounding the future progress of the firm. 

It has been seen that the structural approach has difficulty in explaining the observed credit 

spreads on bonds for numerous reasons. Furthermore, the Merton model appears to offer very 

limited insight with regards to the credit risk of firms in the global and South African context.  
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The extensions and generalizations of the Merton model, although considerably more challeng-

ing to implement, show significantly improved ability to provide useful inferences for the credit 

risk of firms in the South African and global contexts.  The subsequent chapter outlines the 

methodology followed in order to estimate default probabilities for South African firms using the 

two most basic classes of the structural models. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 INTRODUCTION 

“Complete realism is clearly unattainable, and the question whether a theory is realistic enough 

can only be settled only by seeing whether it yields predictions that are good enough for the 

purpose in hand or that are better than predictions from alternative theories.” (Friedman, 1953). 

The insight provided by Friedman sets the background for the manner in which the research 

moves forward to evaluate whether the particular structural models are sufficient for the collec-

tive purpose(s) required of the structural models. This chapter outlines the methodology for es-

timating default probabilities of South African companies using South African financial statement 

and market data for the Merton and Delianedis & Geske models. The methodology regarding 

the estimation of the inputs required for each structural model’s calculation of probability of de-

fault is discussed in detail, with reference to the theory of the structural models provided in the 

previous chapter.  

3.2 DATA 

3.2.1  Firm selection process 

For the purpose of this paper, the top 22 companies of the Johannesburg Stock Exchange 

(JSE) in terms of market capital as listed by Bloomberg have been selected. The top 22 compa-

nies were chosen for simplicity and ease of access to data. Most empirical analyses regarding 

the performance of structural models in predicting default probability exclude financial compa-

nies as their capital structures are a lot more complex and further removed from the simplifying 

assumptions of zero coupon debt structure assumed by most structural models. However, the 

purpose of the research is to provide an idea as to whether structural models can provide in-

sight to credit risks of companies, thus including financial firms in the sample allows for a broad-

er picture to be painted in assessing the structural models performance.  

Although a range of firm types are included in the top 22 of the JSE these firms are likely to be 

of similar investment credit grade. It should be noted that selecting the top 22 firms of the JSE 

as the sample of firms thus limits the ability to assess the performance of the structural models 

for a variety of credit grade firms. The sample of the 22 firms on the JSE with the largest market 

capital is also perhaps not most likely to represent firms that operate in markets with limited 

available data and the study could be significantly improved in this regard. 
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3.2.2 Market value of equity and equity volatility 

The firms daily share price over a four-year period up until 31 December 2014 is recorded from 

Bloomberg in order to estimate the volatility of the equity. The GARCH (1,1) model is chosen to 

estimate the volatility of equity.  

The GARCH (1,1) model is a mean reversion model and assumes that volatility is pulled back to 

its long-term average at a certain rate. The GARCH (1,1) model does not suffer from ‘Ghost 

Feature’ problems in volatility estimation and as such is expected to act as a reliable estimate 

for volatility of equity for the firm (Alexander, 2008). In the base-case scenario the volatility of 

the firm’s equity is set to the unconditional volatility as calculated by the GARCH (1,1) model.  

The market value of the firm’s equity is taken as the share price as at 31 December of each 

year over the period 2009 to 2014. The market value of equity is taken as the value of a single 

share as opposed to market cap value. This is since solving non-linear simultaneous equations, 

required in the estimation procedures of firm value and volatility, prove to be computationally 

more efficient when per share values are used.  

3.2.3 Expected rate of growth of the firm’s value 

The expected growth rate of the firm’s value, 𝜇, is estimated from the Capital Asset Pricing 

Model (CAPM). The CAPM estimates the required rate of return on equity by use of the follow-

ing equation provided by Elton et al. (2011:287).  

 𝑅̅𝑖  = 𝑅𝐹 + 𝛽𝑖(𝑅̅𝑀  − 𝑅𝐹) (3.1)  

Where:  

 𝛽𝑖 =  
𝜎𝑖𝑀

𝜎𝑀
2  (3.2)  

The CAPM thus estimates the required rate of return on the firm’s equity by calculating the co-

variance between the log returns of shares and the market as well as the variance of the log 

returns of the market as at 31 December in each period, where the expected growth rate of the 

firm’s equity is being estimated. The variance and co-variance is calculated using the daily 

share prices of the firms and market over the prior four-year period as recorded by Bloomberg. 

The expected return on the market is calculated as the mean of the log returns of the JSE over 

the prior four-year period. The expected growth rate of the firm’s value can then be estimated by 

de-levering the required return on equity (Sundaran and Das, 2010). The primary focus of the 

research is on risk-neutral default probabilities and the expected growth rate of the firm’s value 

is thus simplified to be approximated by the required rate of return on equity as per the CAPM, 

where 𝑅𝐹  is set as described in section 3.4 where the interest rate is set for the various models. 
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3.3  TIME HORIZON 

3.3.1 Merton model time horizon 

The Merton model assumes a single issue of outstanding zero-coupon debt; it is also common 

practice to assume that face value of the debt becomes due within a one-year time horizon as 

outlined in Wang and Suo (2006) along with Tudela and Young (2003).   

The time to default is also extended to five-years to evaluate the Merton models ability to esti-

mate longer-term probabilities of default.  The Merton model(s) in this paper thus produce esti-

mates for the probability that the firm will default in one years’ time as well as in a five-year peri-

od in the extended time horizon case.   

3.3.2 Delianedis-Geske model time horizon 

The Delianedis-Geske (D&G) model, as described in the previous chapter, assumes two 

tranches of zero-coupon debt that become due in the short and long term respectively. In this 

paper is it assumed that the short-term debt becomes due within a one-year time horizon and 

the long-term debt becomes due over a five-year time horizon, as is common within credit risk 

literature and applications of the D&G model.   

The D&G model(s) in this paper thus produces three different estimates of the probability of de-

fault for the firm. The first estimate produced is the short-term probability of default, which rep-

resents the probability of the firm defaulting within a one-year time horizon. The second esti-

mate produced is the long-term probability of default, which represents the probability of default-

ing over a five-year time horizon on condition that the firm has not defaulted at the end of the 

first year. The last estimate produced is the total probability of default, which represents the 

probability of defaulting at a one-year or five-year time horizon.  

3.4  SETTING THE INTEREST RATE 

Following a similar approach of Holman et al. (2011), the risk-free interest rate is substituted 

with a constant one-year forward financing rate as it can be assumed that the face value of out-

standing debt will be serviced at this rate over the next year. In this paper, it is assumed that 

debt is financed at the one-year prime rate as financed at Rand Merchant Bank. 

The prime rate is a worst-case scenario for the interest rate at which the debt will be serviced 

however; it is worth noting that this approach could be enhanced by considering various forward 

risk-free rates plus a spread. 
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Table 3.1: Prime Rates as at 14 March 2015 

Prime  financing rate 2009 0.15 

Prime  financing rate 2010 0.105 

Prime  financing rate 2011 0.09 

Prime  financing rate 2012 0.09 

Prime  financing rate 2013 0.085 

Prime  financing rate 2014 0.085 

 

Source: Rand Merchant Bank 

3.5 SETTING THE DEFAULT POINT  

As described in the previous chapter the default point is the threshold point for the firm’s value, 

which when crossed, triggers the default of the company on the debt outstanding. For each firm 

the short-term and long-term debts are extracted from the financial statements using Bloom-

berg. The short-term and long-term debt values used are those Bloomberg provides from finan-

cial statements of each firm. In this paper it is also further assumed that all debt financing is ob-

tained in Rand value and interest payments are thus only made in Rands.  

3.5.1 Merton model(s) default point 

In the Merton model, the default point is defined as the face value of the zero-coupon bond due. 

For the purposes of this paper the face value of the zero-coupon bond is taken as the short term 

debt/liabilities as provided by the financial statement of position. This is then converted to debt 

outstanding per share by dividing by the number of shares outstanding for each firm. The de-

fault point is defined in terms of debt per share as this provides ease in calculation as well as 

greater convergence to a solution in solving simultaneous equations for firm value and volatility.  

In the KMV approach, as described in the previous chapter, the face value of the zero-coupon 

debt due in one-year is calculated as the sum of the short-term liabilities and half of the non-

current or long-term liabilities. A third adaptation of the Merton model is also applied which is 

named the ‘total’ style approach where the default point is set to the full sum of short term and 

long term liabilities as per the SOFP (statement of financial position).  

3.5.2 Delianedis-Geske model(s) default point(s) 

The D&G model provides two points of possible default, where the default points are the face 

values of the one-year and five-year zero-coupon outstanding debt issues respectively. The 

face values of the one-year and five-year zero-coupon outstanding debt issues are taken as the 

short and long-term debt values respectively as provided by Bloomberg. Once again, this is 

converted to debt per share and the debt per share is set as the default point. 



29 

 

 

For the ‘KMV styled’ adaptation of the D&G model in this paper, the default point for the one-

year time horizon is set as the short-term debt per share plus half of the long term debt per 

share as recorded from the SOFP provided by Bloomberg. 

3.6 SETTING THE BENCHMARKS  

The one-year and five-year probability of default as measured by the Bloomberg model for the 

probability of default is set as the market expectation or reasonable probability of defaulting over 

the period for the firm. The outputs from the various models are compared to the Bloomberg 

estimate for the PD in order to assess the performance of the structural models. 

3.7 DEFAULT PROBABILITY ESTIMATION  

3.7.1 Merton model default probability 

The risk-neutral probability of default is given by the following closed form expression as pre-

sented in the literature review: 

 
𝑁 {

1

𝜎 √𝑇1 − 𝑡  
[𝐿𝑁 (

𝐷

𝑉𝑇
) − (𝑟 −

1

2
𝜎2) (𝑇 − 𝑡)]} 

(3.3)  

The symbols in the equation above have their usual meaning as described in the previous chap-

ter. The firm value 𝑉𝑇  and volatility of the firm 𝜎 are unobservable and are estimated by solving 

the following set of simultaneous equations provided by Sundaran and Das (2010).  

 𝐸𝑇[𝑉𝑇 , 𝜎] = 𝑉𝑇 𝑁(𝑑) − 𝑒−𝑟(𝑇−𝑡) 𝐷 𝑁(𝑑 − 𝜎√𝑇 − 𝑡)  (3.4) 

 𝜎𝐸 = 𝜎𝑉𝑇
𝑁(𝑑)

𝐸𝑇
   (3.5) 

Where 𝐸𝑇  and 𝜎𝐸  are the known share price of the firm and volatility of equity of the firm as cal-

culated by the GARCH(1,1) model respectively. The data inputs as described in the methodolo-

gy, are collected and read into statistical computer package, R (R Development Core Team, 

2016), R is then used to solve the solve the simultaneous equations in order to calculate and 

estimate the probability of default as per the Merton model. The real-world probability is calcu-

lated similarly to the risk-neutral probability of default where 𝑟 is replaced with 𝜇 (the expected 

growth rate of the firm’s equity) in equation (3.3). The R code used to implement the Merton 

model can be found in Appendix A.  

The method makes use of the Newton Raphson algorithm to solve the non-linear simultaneous 

equations. The method requires initial guesses for the firm value 𝑉𝑇 and volatility 𝜎, the Newton 

Raphson method is very sensitive to these initial guesses.  
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In order to avoid the induction of negative firm volatility, the simultaneous equations were solved 

using solver in Excel initially and these solutions are then input as initial guesses for the param-

eters being estimated.  Alternatively, to using Excel solver iteratively to find an initial solution, 

Crosbie and Bohn (2003) propose the following initial values for solving the system:  

 𝑉𝑇 = 𝐸𝑇 + 𝐷𝑇   (3.6) 

& 𝜎𝑉 = 𝜎𝐸
𝐸𝑇

𝐸𝑇+𝐷𝑇
   (3.7) 

       

3.7.2 Delianedis-Geske model default probability 

The risk-neutral probabilities of default for the D&G model is given by the following expressions 

as presented in the previous chapter:    

 risk neutral short run PD = 1 − 𝑁(𝑑1)   (3.8) 

 
risk neutral long run PD = 1 −  

𝑁2[𝑑1; 𝑑2, 𝜌]

𝑁(𝑑1)
 

  (3.9) 

 risk neutral total PD = 1 − 𝑁2[𝑑1; 𝑑2; 𝜌]   (3.10) 

Where the symbols have their usual meaning for the model as described in the literature review 

in the previous chapter. The real-world probabilities of default are obtained by substituting 𝜇 (the 

expected rate of growth of equity) for the risk-free rate (𝑟) in equations (3.8), (3,9) and (3.10).  

Once again estimates are required for 𝑉∗( cut-off value), 𝑉𝑇  (firm value) and 𝜎 (volatility of firm 

value) in order to calculate the probabilities of default.  Sunduran and Das (2010) provide the 

following system of non-linear equations to estimate unknown paramaters: 

 𝑉∗ =  𝐷1 + 𝐵2,𝑇1
  (3.11) 

 𝐸𝑇 = 𝑉𝑇𝑁2[𝑑1 + 𝜎 √𝑇 − 𝑡; 𝑑2 + 𝜎 √𝑇 − 𝑡; 𝜌] − 𝐷2𝑒−𝑟(𝑇2−𝑡) 𝑁2[𝑑1; 𝑑2; 𝜌]

− 𝐷1𝑒−𝑟(𝑇1−𝑡) 𝑁(𝑑1) 

 (3.12) 

 
𝜎𝐸 = 𝜎𝑉𝑇

𝑁(𝑑1)

𝐸𝑇
 

 (3.13) 

The system of non-linear simultaneous equations are solved in R by making use of the Newton 

Raphson algorithm, simirlarly to the Merton model estimation, Microsoft Excel solver was used 

to provide starting guesses for the three unkown paramaters to be estimated. The R-code used 

to estimate and implement the D&G model can be found in Appendix A.  
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It should be noted that the system of simultaneous equations only holds instantaneously as 

noted by Crosibe and Bohn (2003). This procedure can thus be improved upon by using the 

more complex iterative procedure outlined in Vasalou and Xing (2004).  

3.8 SUMMARY  

In short, the probability of default as determined by the Merton and D&G models with their re-

quired inputs and estimates are calculated for a sample of 22 firms over the period 2009 to 2014 

and compared to the Bloomberg probability of default in order to assess the reasonability of the 

estimates provided by the structural models. Table 3.2 summarises the assumptions and inputs 

for the various modes. The results obtained from applying the outlined methodology and proce-

dures along with the concurrent analysis of these results are presented in the next chapter.  

Table 3.2: Summary of method inputs 

 Merton Merton ‘KMV’ Merton ‘Total’ D&G D&G ‘KMV’ 

Market value 
of equity. 

Share price Share price Share price Share price Share price 

Volatility of 
equity 

Unconditional 
vol. Garch(1,1) 

Unconditional 
vol. Garch(1,1) 

Unconditional 
vol. Garch(1,1) 

Unconditional 
vol. Garch(1,1) 

Unconditional 
vol. Garch(1,1) 

Expected firm 
value growth 
(𝜇) 

Approximated 
by CAPM (𝑟) 

Approximated 
by CAPM (𝑟) 

Approximated 
by CAPM (𝑟) 

Approximated 
by CAPM (𝑟) 

Approximated 
by CAPM (𝑟) 

Interest rate Prime rate Prime rate Prime rate Prime rate Prime rate 

Default point Current liabili-
ties per share 
as per the 
SOFP  

Current liabili-
ties + half non-
current liabili-
ties per share 
as per SOFP  

Total liabilities 
of firm per 
share as per 
SOFP 

Current and 
non-current 
liabilities per 
share at each 
default point 
respectively as 
per SOFP 

Current liabili-
ties + half non-
current liabili-
ties per share 
and then non-
current liabili-
ties per share 
at second de-
fault point 

Time Horizon 1 and 5 years 
independently 

1 and 5 years 
independently 

1 and 5 years 
independently 

1 and 5 years 
for each de-
fault point re-
spectively 

1 and 5 years 
for each de-
fault point re-
spectively 

Estimating un-
observable 
parameters 

Newton-
Raphson algo-
rithm for non-
linear simulat-
enous equa-
tions. 

Newton-
Raphson algo-
rithm for non-
linear simulat-
enous equa-
tions. 

Newton-
Raphson algo-
rithm for non-
linear simulat-
enous equa-
tions. 

Newton-
Raphson algo-
rithm for non-
linear system 
of equations. 

Newton-
Raphson algo-
rithm for non-
linear system 
of equations. 
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CHAPTER 4 

RESULTS AND OBSERVATIONS 

4.1 INTRODUCTION 

In this chapter the results and outcomes of applying the methodology described in Chapter 3 to 

estimate the probability of default from market and financial statement data are analyzed in 

detail. The probabilities of default are calculated for the 22 companies over the period 2009 to 

2014 using the Merton and Delianedis & Geske class of stuctural models and compared to the 

Bloomberg probability of default in order to evaluate the estimation of the probability of default 

over time.  

 4.2 MERTON MODEL(S) ONE-YEAR PROBABILITY OF DEFAULT 

4.2.1 Merton models firm value and firm volatility estimation 

The ability of estimation procedure to succesfully solve the simultaneous equations required to 

estimate the value and volatility of the firm is measured by the output column ‘convergence’. 

The convergence measure, measures the absolute difference between the values of the 

expected solution of the simultaneous equations and the solutions obtained when using the 

values from the Newton Raphson method. Figure 4.1 provides a graphic of the convergence for 

the various models. It is clear that all convergence values all extremely close to zero indicating 

that R was able to succesfully satisfy the conditions of the simultaneous equations and find 

accurate estimates for the firm value and volatility of the firm value according to the procedure 

used. 

Figure 4.1: Convergence to solution 2009-2014 Merton models 
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4.2.2 Merton models default probability 

The results for estimating the probability of default over a one-year time horizon for 22 compa-

nies using the Merton model(s) for the years 2009 to 2014 can be found in figure 4.2 along with 

the corresponding graphics in Appendix B.  

The Merton style models seemingly significantly under predicts the probability of default over a 

one-year time horizon, as all probabilities of default also close to zero with the exception of the 

company ‘AMS’. Figure 4.2 includes only risk-neutral probabilities of defaults from the Merton 

models as the risk-neutral probabilities of default acts as an upper bound for the probability of 

default in comparison to the real-world probabilities of default as shown in the literature review 

in Chapter 2. Since default probabilities lie between zero and one with many firms yielding 

probabilities of default close to zero, a negative log scale is applied to the default probabilities in 

order to allow for an easier visual comparison. The larger values thus represent default probabil-

ities that are closer to zero. 

Figure 4.2 Merton model(s) results for 2009 

 

The significant under prediction of default probabilities as illustrated in Figure 4.2 appears to 

agree with empirical research that suggests the Merton models significantly under predict the 

probability of default for investment grade firms.  

4.2.3 AMS results 

The results across the three variations of the Merton model for the company AMS in particular 

are evaluated in order to identify why AMS was the only company for which the probabilities of 

default predicted by the models were significantly different to zero.  
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Figures 4.3 & 4.4 provide the probability of default along with the other paramaters estimated for 

the Merton models for the company AMS over the period 2009 to 2014. The corresponding 

table can be found in Appendix B. 

Figure 4.3: Probability of default AMS Merton Models 2009-2014 
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adaptations of the Merton model that have been applied. Firstly AMS is significantly different to 
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three Merton models as this is significantly higher than that of other companies. This would 
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into the firm’s capital structure in order to capture the credit risk associated with the firm. This 

agrees with the evidence found in the study of Holman et al. (2011) where the only firms that 
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Figure 4.4: Firm leverage and volatility AMS Merton Models 2009-2014 
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Figure 4.4 illustrates the effect of the choice of default point or Merton model adaptation in 

predicting the probability of default. As the face value of the debt outstanding is increased as in 

the KMV and total styled approaches, the firm’s leveraged position increases while 

simultaneously decreasing the volatility of the firm’s value. 

Figure 4.3 suggests that the KMV styled approach provides the most consistent estimate for the 

probability of default when there is sufficient leverage and volatility for the Merton model to 

capture the probability of default. In the years 2013 and 2014, the probability of default 

estimated by the Merton models, is once again very close to zero which is not a very realistic or  

useful estimate. It appears that this drop off in ability to capture the probability of default 

coincides with a drop in the firm volatility.  

4.2.4 Power of the Merton model 

The Merton model estimates the risk-neutral probability of default by making use of the following 

equation: 

 
𝑁 {

1

𝜎 √𝑇1 − 𝑡  
[𝐿𝑁 (

𝐷

𝑉𝑇
) − (𝑟 −

1

2
𝜎2) (𝑇 − 𝑡)]} 

(4.1) 

The equation for the probability of default remains the same irrespective of the adaptation of the 

Merton model applied. The adaptation or form of Merton model applied thus changes the 

estimates for the value of the firm and hence leverage as well as the volatility of the firms value. 

The probability of default in the Merton models are thus determined by the estimates of the 

value of the firm 𝑉𝑇 and the volatility of the firm’s value 𝜎.  The probability of default for the 

Merton model is thus graphed as a function of the Leverage ratio as well as firm volatility value 

in order to determine combinations of these inputs for which the Merton Models produce 

estimates significantly different to zero.  The R-code to produce these graphics can be found in 

Appendix A. 

Figures 4.5 & 4.6 confirms the idea that the Merton models only captures the probability of 

default or credit risk associated with the firm in the presence of high leverage or firm volatility as 

calculated by the model. This explains why the Merton models predicted almost zero probability 

of default for all firms only excluding the highly leveraged AMS.   

Furthermore, the low levels of debt financing amongst the top 22 South African firms as illus-

trated by the low leverage ratios in figure 4.5, supports the findings of Holman et al. (2011) that 

suggests sub-optimal capital structures may explain the inability of the Merton model to accu-

rately capture the credit risk associated with the firm. 



36 

 

 

Figure 4.5:  2009 Level curve for Merton model PD less than 0.00001  

  

 

Figure 4.6: Power of the Merton Models 
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Figures 4.6  along with the two level curves also suggest that in the presence of an already 

large combination of leverage and firm value volatility, an aggresive trade-off for more leverage 

and less firm volatility as with using the total styled approach will lead to more volatile and 

aggresive estimates probability of default. The KMV styled approach thus is expected to 

produce the more consistent estimates of PD when there is sufficient leverage and volatility to 

capture the probability of default as it moderately increases leverage for a trade-off in firm 

volatility in the estimation procedure.   

Figure 4.7: Level curve for Merton model PD less than 0.01 

 

4.3 DELIANEDIS & GESKE(S) ONE-YEAR PROBABILITY OF DEFAULT RESULTS 

4.3.1 D&G firm value, cut off value and firm volatility estimation 

Figure 4.8: Convergence D&G models 2009 
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Figure 4.8 illustrates the ability of the Newton Raphson Method to solve the non-linear simulta-

neous equations required by the D&G models to estimate the probability of default. The conver-

gence values are all close to zero indicating that the method was successful in finding solutions 

that satisfy the constraints given the starting guesses used by the model as discussed in chap-

ter 3.  

4.3.2 D&G short-term probability of default 

The results for estimating the probability of default over a one-year time horizon for 22 compa-

nies using the Delianedis & Geske model(s) for the years 2009 to 2014 can be found in figure 

4.9 along with the corresponding graphics in Appendix C.  

The short run PD is once again transformed onto a negative log scale to allow for more demon-

strative visual comparison. The D&G models appear to similarly predict close to zero and in 

some instance exactly zero for short run default probabilities of all firms except for AMS. The 

significantly large negative log values in figure 4.9 illustrates the under prediction of default 

probabilities from the D&G model as these values correspond to default probabilities that are 

close to zero. 

Figure 4.9: Delianedis & Geske ‘short run’ PD 2009 

 

4.3.3 D&G short-term probability of default AMS results 

The results across the two variations of the D&G model for the company AMS in particular are 

evaluated in order to identify why AMS was the only company for which the probabilities of 

default predicted by the models were significantly different to zero. Figures 4.10 & 4.11. 

provides the probability of default along with the other paramaters estimated for the D&G 
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The firm has significantly larger leverage ratios than other companies in conjunction with a large 

equity volatility. This suggests that the D&G model similarly is only able to reasonably predict 

the probability of default when the firm is highly leveraged and the value of the firm is also highly 

volatile. This can be seen as the estimates of the probability of default move towards zero when 

the level of volatility of firm value drops for a given level of leverage as can be seen in the years 

2012, 2013 and 2014.   

Figure 4.10: Delianedis & Geske ‘short run’ PD AMS 

 

Figure 4.11: Delianedis & Geske leverage and firm value volatility AMS 
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This increase results in a larger short term leverage ratio in the estimation procedure while sim-

ultaneously aggressively decreasing the long term leveraged position and volatility of the firm 

value. Figure 4.11 shows that the KMV adaptation increases both the critical cut off value 

(𝑉∗) as well as the value of the firm (𝑉𝑇) in the estimation procedure. It appears that the KMV 

adaptation overly aggressively increases the short term leveraged position when the firm is suf-

ficiently leveraged and is thus likely to overestimate the short term probability of default as evi-

dent in figure 4.10.  

The D&G model produces an estimate for the risk-neutral short run probability of default by 

means of the following equation: 

 risk neutral short run PD = 1 − 𝑁(𝑑1) (4.2)  

Where: 

 

𝑑1 =
𝐿𝑛 (

𝑉𝑇
𝑉 ∗) + (𝑟 +

1
2 𝜎2)(𝑇1 − 𝑡)

𝜎√(𝑇1 − 𝑡)
 

 

Similar to the analysis of Merton this function is graphed as a function of short term financial 

leverage and firm value volatility in order to provide insight into the circumstances under which 

the D&G models provide useful estimates. The short term financial leverage is measured as: 

 
𝐿 =

𝑒−𝑟(𝑇1−𝑡)𝑉∗

𝑉𝑇
  

(4.3)  

Figure 4.12: Power of the D&G models 

 

Leverage

0.0
0.2

0.4
0.6

0.8

1.0

F
ir
m

 V
o
la

til
ity

0.0

0.2

0.4

0.6
0.8

1.0

z
z

0.0

0.2

0.4

0.6



41 

 

 

Analogous to the Merton model, the D&G model requires a relatively large combination of short-

term leverage and volatility in order to produce meaningful estimates of the short run probability 

of default.  Figure 4.13 confirms that AMS is the only firm with sufficient short-term leverage and 

volatility for the D&G model to produce an estimate significantly different to zero.  

Figure 4.13:  2009 Level curve for D&G model PD less than 0.00001  
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Figure 4.14: Delianedis & Geske total probability of default 2009, 2011 & 2014 
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More encouragingly there now appears to be five firms, namely AMS, IMP, NTC, SOL and SAP, 

for which the D&G total probability provides useful estimates of the one-year probability of de-

fault in certain instances. The characteristics of these firms are analysed in detail in order to 

gain insight into the conditions under which the total probability of default as per the D&G model 

provides useful estimates.  

Figure 4.15: Delianedis & Geske ‘total’ PD NTC 
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Figure 4.15 provides a useful starting place as the model only provides a reasonable estimate in 

the year 2010. The Firm NTC has relatively low volatility and short-term leverage however, there 

is a large spike in the long term leverage ratio, indicating that the long term leverage ratio is po-

tentially a big driver in generating total probabilities of default.  

Figure 4.16: Delianedis & Geske ‘total’ PD SAP 
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Figure 4.17: Delianedis & Geske ‘total’ PD SOL 
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tility suggesting that the long term leverage ratio and volatility are the key generators of the total 

probability of default.  
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Figure 4.18: Delianedis & Geske ‘total’ PD IMP 

 

 

Figure 4.18 confirms that the total probability produces useful estimates where there is a combi-

nation of large firm value volatility as well as long-term leverage ratio. Examining the firms in the 

sample it is evident that most firms have moderate firm value volatility but significantly low lev-

erage ratios and thus the model produces estimates of the probability of default that are close to 

zero in these instances.  

Comparing figures 4.15 to 4.18 against 4.7 and 4.8, it is evident that the total probability of de-

fault produces reasonable estimates for a greater combination of volatility and leverage than the 

Merton model which requires considerably larger combinations of the two in order to produce 

probabilities of default significantly different to zero. The total probability of default appears to 

respond only marginally more reasonably to levels of leverage and volatility thus explaining why 

it was able to produce meaningful estimates for five of the firms as opposed to the single mean-

ingful estimate in the case of Merton with the extremely leveraged AMS.  
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4.4 COMBINED RESULTS FOR AMS 

It has been comprehensively shown thus far that the Merton as well as D&G class of structural 

models only produces meaningful estimates for high levels of leverage for the firm as well as 

large levels of firm value volatility. The capital structure and firm equity volatility for AMS is now 

analysed in order to provide insight into why this particular debt structure and equity volatility 

was the only one in the group of firms to produce sufficient leveraged positions and firm value 

volatility in order for the structural models to produce meaningful estimates.  

The results suggest that higher levels of equity volatility along with a debt structure where the 

value of the debt outstanding is significantly large in comparison to the value of equity, produces 

a leveraged position and firm volatility sufficiently large enough for the structural models to 

produce meaningful estimates. This can be seen as AMS is the only firm with debt value greater 

than the value of the equity, all other firms have debt values that are relatively small in 

comparison to the value of equity and thus do not produce the sufficiently large enough 

leveraged positions required by the structural models.  

The equity volatilty of AMS is also significantly greater than all other firms thus indicating that a 

significantly large equity volatility produces the firm volatility which is large enough for the 

structural models to meaningfully estimate the probability of default. Figure 4.19 reaffirms this 

idea as when the equity volatility drops to the average level of the other firms in 2013 and 2014 

the firm value volatility falls below the critical region for which structural models produce 

meaningful estimates. 

 

Figure 4.19: Firm value volatilty and leverage vs debt structure and equity volatility 
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Thus in order for the structural models to provide meaningful or useful estimates for the 

probability of default, the firm being evaluated must exhibit a high level of equity volatility and 

posses a capital structure that incorporates a considerable amount of leverage. Under those 

conditions it appears that the structural models are able to reasonably estimate the probability of 

default.  

The various structural models estimated probabilities of default is compared to the Bloomberg 

probability of default, in the instance where the firm displays sufficient leverage and firm value 

volatility for the structural models to applied, as is the case with the firm AMS for the period 

2009 to 2012.  The mean absolute difference between the estimated PD and the Bloomberg PD 

is used as a measure in an attempt to identify which structural model most accurately predicts 

the PD when there is sufficient leverage and volatility present.  

Figure 4.20 risk-neutral probability of default estimation AMS 
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Figure 4.21 Real-world probability of default estimation AMS 

 

Figure 4.22 Mean absolute error of estimation across models for AMS  

 

Figure 4.23 D&G short run risk-neutral probability of default estimates for AMS  
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The results indicate that the D&G risk-neutral short run probability of default may provide the 

most consistent estimate between the structural models in the instance where there is sufficient 

financial leverage and volatility for the models to produce meaningful estimates. The D&G risk-

neutral short run probability of default has the lowest mean absolute error and appears to pro-

vide an estimate that closely matches the Bloomberg PD as seen in figure 4.22 and 4.23. How-

ever, the sample size of only four-years or four estimates is far too small to make any statistical-

ly significant claims around the performance between the structural models and warrants further 

investigation.   

4.5 FIVE-YEAR PROBABILITY OF DEFAULT 

The time horizon for default is extended to five years for the structural models and the results 

are compared to the Bloomberg five-year PD to assess whether the structural models can be 

used to provide estimates of longer-term probabilities of default.  

4.5.1 Merton models probability of default 

The results for estimating the probability of default over a five-year time horizon for 22 compa-

nies using the Merton model(s) for the years 2009 to 2014 can be found in figure 4.24  along 

with the corresponding graphics in Appendix B. The default probabilities are once again trans-

formed onto a negative log scale throughout. 

The Merton models perform significantly better over the extended five-year time horizon as the 

models produce meaningful estimates for a far larger number of firms in the sample. However, 

the problem remains that in multiple instances the Merton models produces probabilities of de-

fault that are close to zero which are clearly unrealistic and significantly under predict the prob-

ability of default of the firm. 

Figure 4.24 Merton models five-year PD vs Bloomberg PD 2009 
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Extending the time horizon produces meaningful estimates for a far wider range of firm leverage 

and volatility combinations as expected from option pricing theory. Figures 4.25 and 4.26 con-

firm the Merton models ability to capture the probability of default for a much greater combina-

tion of leverage and volatility than the instance of one-year probability of default estimates.  

Figure 4.26 suggests that the low levels of leverage amongst the firms is responsible for the 

Merton models producing estimates of close to zero for the five year probability of default for 

certain firms once again in agreement with the work of Holman et al. (2011).  This suggests that 

the Merton models may provide a useful estimate for longer-term probabilities of default where 

the firm possesses a capital structure that incorporates a moderate to significant amount of lev-

erage.  

 

Figure 4.25 Merton model five-year probability of default  
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Figure 4.26 2009 Merton model level curve 5-year PD less than 0.0001  

 

Figure 4.26 indicates that the firm AMS is significantly different to the other firms in the sample 

in terms of leverage. The five-year probabilities of default for the Merton models for AMS are 

found in figure 4.27 and provide an indication of the Merton models performance in the scenario 

of a highly leveraged firm.  In the instance of the highly leveraged and volatile firm the Merton 

models appear to significantly over predict the probability of default.   

Figure 4.27 Merton model results for AMS 5-year PD vs Bloomberg PD  
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The firm AMS is removed from the sample as an outlier and the mean absolute error of 

prediction for the Merton models is calculated and can be found in Figure 4.28. The results 

suggest that the KMV adaptation of the Merton model provides the better estimate for the five-

year probability of default between the Merton models. Figure 4.24 shows the base Merton 

approach consistently underestimates the PD while the ‘total’ approach tends to over estimate 

the PD.  Thus the KMV adaptation of the Merton Model allows for the most consistent capital 

structure assumption that produces firm leverage and volatility estimates for which the Merton 

model most accurately estimates the five-year probability of default.  

Figure 4.28 Merton models mean absolute erorr vs Bloomberg PD  

 

4.5.2 Delianedis & Geske models long-term default probability 

The long-term probability of default from the D&G model provides the probability of defaulting in 
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first year. The total probability of default is greater than the long-term risk-neutral probability of 

default in all instances as expected from equation 4.5 and 4.6. Thus, the total probability of de-

fault is used as the measure for the five-year probability of default produced by D&G model. 

The analysis is thus analogous to that of section 4.3.4 presented previously in the results. The 

D&G total probability of default only provides meaningful estimates in five instances as previ-

ously explored as opposed to the Merton models which provide meaningful estimates in a far 

larger number of firms.  The Merton models appear to react more reasonably to leverage ratios 

and volatility in the extended time horizon as opposed to the D&G model, evidenced by the far 

greater number of firms for which meaningful estimates were produced.   
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The D&G model produces the three different estimates for the probability of default by means of 

the following equations where the symbols have their usual meaning as defined in chapter 2.   

 risk neutral short run PD = 1 − 𝑁(𝑑1) (4.4) 

 
risk neutral long run PD = 1 −  

𝑁2[𝑑1; 𝑑2, 𝜌]

𝑁(𝑑1)
 

(4.5) 

 risk neutral total PD = 1 − 𝑁2[𝑑1; 𝑑2; 𝜌] (4.6) 

The analysis in section 4.3.4 suggested that the long-term leverage and volatility are the key 

drivers in producing risk-neutral total probability of default as per the D&G model. The risk-

neutral total PD is graphed as a function of long-term leverage and firm volatility for a given level 

of short-term leverage in figure 4.29. Where long-term leverage is measured as: 

 
𝐿 =

𝑒−𝑟(𝑇1−𝑡)𝐷2

𝑉𝑇
  

(4.7)  

The given level of short-term leverage is taken as 0.2 which represents the average in the sam-

ple of firms in 2009.  

Figure 4.29 D&G total default probabilities and level curve 
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Figure 4.29 confirms that the total probability of default as measured by the D&G model requires 

large levels of long-term leverage and volatility in order to produce estimates of default proba-

bilities significantly different to zero. Figure 4.24 and 4.26 along with figure 4.29 also confirms 

that the Merton model five-year PD responds more reasonably to combinations of leverage rati-

os and volatility as well as produces estimates that are a lot further away from zero than the 

D&G total probability of default. This would appear to suggest that the Merton model framework 

is preferred over the D&G model for evaluating longer-term default probabilities.  

However, it should be noted that the KMV adaptation of the Merton model allows for an aggre-

gation of short-term and long-term debt, since the firms in the sample are lowly leveraged this 

method is expected to produce more reasonable estimates than the D&G model where the debt 

classes are treated separately. This means that the D&G model may still be able to provide very 

useful information regarding the short and long-term credit risks associated with the firm, pro-

vided the firm incorporates a sufficient amount of debt financing into the capital structure and 

exhibits a volatile equity price.  

4.6 AFRICAN BANK CASE STUDY 

African Bank Limited (Abil) was one of the more recent significant financial failures of a major 

firm in the South African market. In August 2014, African Bank collapsed in the wake of a moun-

tain of bad debt, forcing the government to intervene and appoint curators to oversee the re-

structuring of the company. (Fin 24, 2014). Abil thus provides an opportunity to assess how well 

the structural models of Merton and Delianedis & Geske are able to predict or forewarn of the 

deterioration of Abil’s financial position in the build up to the collapse.  
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Figure 4.30 Abil one-year probability of defualt 2009-2014 CS1 &CS2 

 

 

Abil’s financial position as well as credit risk appears to be stable until 2014 in which it defaults. 

For this reason the results for both the one-year and five-year probabilities of default are split 

into two separate graphics for the periods 2009 up until the end of the first quarter of 2014 

(CS1) and the second quarter of 2014 (CS2).   
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Figure 4.31 Abil five-year probability of default 2009-2014 CS1 &CS2 

 

 

The rapid deterioration of Abil’s credit worthiness as well as financial stability within 2014 sug-

gests that probabilities of default require to be reassessed more frequently than an annualised 

period in order to be successful in effectively predicting forthcoming default. 

The one-year probability of default as determined by the models of Merton and D&G significant-

ly under predict the forthcoming financial distress of Abil up until the end of the first quarter of 

2014 as shown in figure 4.30.   

0

0.05

0.1

0.15

0.2

0.25

2009 2010 2011 2012 2013 2014
CS1

p
ro

b
ab

ili
ty

 o
f 

D
e

fa
u

lt

year

Merton

Merton,Kmv

Merton,Total

DG

DG,KMV

BloomPD

0

0.2

0.4

0.6

0.8

1

1.2

2014 CS2

p
ro

b
ab

ili
ty

 o
f 

D
e

fa
u

lt

year

Merton

Merton,Kmv

Merton,Total

DG

DG,KMV

BloomPD



58 

 

 

More encouragingly, the five-year KMV adaptation of the Merton Model appears to provide the 

best indication of the credit risk of the firm and forthcoming default. The model provides stable 

estimates as tracked by Bloomberg over the period of financial stability for Abil. However, it also 

sharply increases at the end of 2013 and the first quarter of 2014 most effectively reflecting the 

increased risk of default for Abil as illustrated in figure 4.31. This is in agreement with the works 

of Tudela and Young (2003) that suggests the Merton model provides a strong signal of forth-

coming default or financial distress of a firm.  

The second quarter of 2014 provides very interesting results as in both the one-year and five 

year estimates of the probability of default, the Newton Rapshon method was unable to find 

convergence to a solution for solving the unknown parameters of the sets of simultaneous equa-

tions in the Merton KMV and total approach as well as the D&G model. The estimates produced 

by these three models were thus used with the solutions found that were closest to fitting the 

constraints.  These three models predict a probability of default of one at the end of the second 

quarter of 2014 successfully recognizing the forthcoming default of the firm although the param-

eters used did not fully satisfy the constraints of the system of equations specified in the estima-

tion procedure.   

In the case of the base Merton model as well as KMV styled D&G model where convergence to 

solutions were found for the second quarter of 2014, the models significantly under predicted or 

failed to accurately reflect the increased risk associated with Abil. The KMV adaptation of the 

D&G model adversely affects estimation procedure of the unknown parameters and even in-

duces negative asset volatilities in some instances. The D&G model already incorporates the 

effect of the two tranches of debt in the capital structure and an aggregation of debt within either 

tranches thus adversely affects the estimation procedure. 

The results of the second quarter of 2014 suggest that the method of solving simultaneous 

equations to solve for the unknown firm value and volatility is responsible for the weak perfor-

mance of the structural models. This is illustrated by the inability of the method to obtain con-

vergence to a solution in the period prior to default as well as the extreme manner in which it 

trades leverage for volatility in the estimation process where convergence was obtained. This is 

in agreement with the works of Crosbie and Bohn (2003) which highlight the weaknesses of this 

method to solve for unknown firm parameters. 

Furthermore, this may suggest that the theoretical basis for the structural models may provide a 

useful framework for estimating the probability of default however, the method in which the un-

known parameters of firm value and volatility were estimated contributed to the poor perfor-

mance of structural models ability to estimate the probability of default.  
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4.7 SUMMARY 

Overall, the Merton and D&G models produce default probabilities of close to zero in many in-

stances that significantly under predict the credit risk or probability of default associated with the 

majority of the firms in the sample of the top 22 of the JSE. However, it has been shown that in 

the presence of sufficient financial leverage and volatility of the firms value, the structural mod-

els may provide useful credit risk information. 

Furthermore, the low levels of debt financing and hence financial leverage amongst the top 22 

firms of the JSE is largely responsible for the poor performance of the structural models. The 

procedure of solving simultaneous equations in order to estimate the unknown firm value and 

volatility are also shown to unfavourably affect the structural models performance. 

The performance of the structural models is also significantly improved when considering ex-

tended time horizons for the probability of default and the models appear to respond to much 

wider combinations of leverage ratios and volatility. Extending the time horizon for default how-

ever does not solve the reoccurring problem that the structural models face in their inability to 

capture the credit risks associated with lowly leveraged firms. Extending the time horizon also 

appears to overstate the credit risk associated with firms that are highly leveraged.   

Most encouragingly though, using Abil as a case study, the Merton model appears to be able to 

predict financial distress and when evaluated on a frequent to regular basis can provide good 

warning signs of forthcoming default or financial difficulty. 

In the following chapter the research is viewed as whole; the ability of the research to answer 

the posed research question and objectives is evaluated. The scope and limitations of the re-

search is also presented along with recommendations for potential further research.  
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CHAPTER 5 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

In the wake of the 2007 credit crisis, credit risk and the management thereof has become an 

ever-increasingly important field. Default and failure of financial firms have widespread econom-

ic impact and global regulatory authorities have stressed the need for incorporating counterparty 

credit risk (CCR) in derivative positions as well as increasing financial reporting standards to 

quantify CCR in derivative transactions in the form of CVA.  

Default probabilities were shown to be essential to quantifying CVA as well as credit risk and of 

course provide a predictor of default. The literature review considered the various methods in 

which default probabilities can be determined and found that default probabilities from bond or 

CDS spreads obtained from the market was preferred for CVA quantification by the IFRS. CVA 

is intended to be a market-based measure and thus risk-neutral probabilities from structural 

models may theoretically be used for CVA quantification where bond or CDS data is not availa-

ble.  

The methodology then outlined the procedure followed to implement the two most basic classes 

of structural models in order to determine whether the structural approach could provide a sim-

plistic alternative to modelling default where bond and CDS data is not available. The Merton 

and D&G models were shown to provide very limited information regarding the credit risk of the 

top 22 firms of the JSE, as the models produced estimates for default probabilities close to zero 

in many instances in line with previous empirical studies in the global and South African market. 

The low levels of leverage amongst the South African firms were found to be responsible for the 

poor performance of the structural models. However, the Merton and D&G models may provide 

very useful estimates of default probabilities where the firm is sufficiently leveraged and has a 

highly volatile equity value.  

This would suggest that the Merton and D&G models provide a partial solution to measuring 

CCR where the counterparty being evaluated operates in markets with limited credit market da-

ta. The term sufficiently leveraged is used loosely throughout the research and warrants further 

investigation into under what exact levels of leverage and volatility the Merton and D&G models 

can be used to provide a simplistic alternative to modelling default of firms.  

One of the notable limitations in the approach followed in this research is the over simplification 

in the choice of sample firms. The top 22 firms of the JSE are not likely to represent firms that 

operate in market conditions with limited credit information.  This limits the ability to evaluate the 

structural approach’s capacity to provide a viable simplistic alternative to measuring CCR for 

firms that operate in such conditions. 
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Moreover, the problem still remains that the simplistic Merton and D&G models fail to capture 

the credit risks associated with the firm where the firm does not incorporate large amounts of 

leverage into its capital structure. Increasing the scope of the solution to include more complex 

alternatives to modelling default just as the literature review indicates, that the mathematically 

more complex extensions of the Merton framework may provide a viable alternative to modelling 

default and credit risk. 

A suggestion for further research would thus be whether the inclusion of more complex models 

and methods of estimation in the structural approach are able to provide consistent and reliable 

estimates of default probabilities for South African firms from financial statement and market 

data. Such extensions include the incorporation of stochastic interest rates and first passage 

models such as the model of Leland and Toft (1996) and more complex estimation procedures 

of estimation as suggested in Vassalou and Xing (2004).  

It is interesting to note that, although the simplistic class of structural models provides limited 

credit risk information, the Merton model still provides a good indication or prediction of forth-

coming financial distress. This perhaps warrants further investigation into which of the structural 

models and perhaps methods of determining default probabilities, provide the best indication of 

forthcoming default by evaluating previous cases of default. 

Overall, South African financial statement and equity market data can be used to provide insight 

to credit risk and the measurement of default probabilities of South African firms. More particu-

larly the extensions of the Merton model are expected to provide more useful information re-

garding the credit risk associated with the firm. 
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APPENDIX A: 

 R Code 

A1 DATA INPUT AND ESTIMATION 

> # we begin by importing the excel folders with the necessary data 

> # financial statement inputs for the companies over the 5 year period 

 

> data.inputs.2009 <- read.table(file ="clipboard",header = TRUE) 

> data.inputs.2010 <- read.table(file ="clipboard",header = TRUE) 

> data.inputs.2011 <- read.table(file ="clipboard",header = TRUE) 

> data.inputs.2012 <- read.table(file ="clipboard",header = TRUE) 

> data.inputs.2013 <- read.table(file ="clipboard",header = TRUE) 

> data.inputs.2014 <- read.table(file ="clipboard",header = TRUE) 

 

 

> daily.returns.2009 <- read.table(file="clipboard",header=”T”) 

> daily.returns.2010 <- read.table(file="clipboard",header=”T”) 

> daily.returns.2011 <- read.table(file="clipboard",header=”T”) 

> daily.returns.2012 <- read.table(file="clipboard",header=”T”) 

> daily.returns.2014 <- read.table(file="clipboard",header=”T”) 

 

A1.2 Risk-free rate  

> # we set the risk free rate to be used through the initial estimation and 

calculation procedure. 

# riskfreerate estimated as one year prime rate as financed at Reserve bank 

 

> riskfree.rate.2009 <- 0.15 

> riskfree.rate.2010 <- 0.105 

> riskfree.rate.2011 <- 0.09 

> riskfree.rate.2012 <- 0.09 

> riskfree.rate.2013 <- 0.085 

> riskfree.rate.2014 <- 0.085 

 

A1.3  Expected growth rate of equity 

# we now require to estimate the required rate of return for each of the giv-

en companies using CAPM. 

> # we do this through the use of the function return.estimate which provides 

expected rate of return on company for a given risk free rate r. 

 

> return.estimate 

function (mat,r,year)  

# we write a function to estimate the return on each stock using CAPM 

{if( year == 2009){ 

 mat <- daily.returns.2009[,2:ncol(daily.returns.2009)]} 

if( year == 2010){ 

 mat <- daily.returns.2010[,2:ncol(daily.returns.2010)]} 

if( year == 2011){ 

 mat <- daily.returns.2011[,2:ncol(daily.returns.2011)]} 

if( year == 2012){ 

 mat <- daily.returns.2012[,2:ncol(daily.returns.2012)]} 

if( year == 2013){ 

 mat <- daily.returns.2013[,2:ncol(daily.returns.2013)]} 

if( year == 2014){ 
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 mat <- daily.returns.2014[,2:ncol(daily.returns.2014)]} 

 

r <- r 

covar <- cov(mat) 

 

mew <- matrix(NA,nrow=nrow(covar),ncol=3) 

Rbar <- mean(mat[,1])*252 

name <- rownames(covar) 

rownames(mew) <- name 

colnames(mew) <- c("B","Rm-Rf","U") 

 

for (i in 1:nrow(covar)) 

{ 

 mew[i,1] <- covar[i,1]/covar[1,1] 

 mew[i,2] <- Rbar - r 

 mew[i,3] <- r+mew[i,1]*mew[i,2] 

} 

mu <- matrix(mew[2:ncol(covar),3]) 

colnames(mu) <- c("U") 

rownames(mu) <- rownames(covar[2:nrow(covar),]) 

return(mu) 

 

} 

 

A1.4  Volatility of equity 

 

> # we now estimate the volatility of the returns of shares for each respec-

tive company using a garch(1,1) model 

> library(fGarch) 

> library(timeSeries) 

> # we estimate volatility of equities through garch(1,1) in the following 

function 

 

# creating return structure without the market returns 

> returns.2009 <- daily.returns.2009[,-2] 

> returns.2010 <- daily.returns.2010[,-2] 

> returns.2011 <- daily.returns.2011[,-2] 

> returns.2012 <- daily.returns.2012[,-2] 

> returns.2013 <- daily.returns.2013[,-2] 

> returns.2014 <- daily.returns.2014[,-2] 

 

 

 

> vol.estimate 

function (mat,year)  

{ 

if( year == 2009) 

{ 

 mat <- as.timeSeries(returns.2009) 

} 

 if( year == 2010) 

{ 

 mat <- as.timeSeries(returns.2010) 

} 

 if( year == 2011) 

{ 

 mat <- as.timeSeries(returns.2011) 

} 

 if( year == 2012) 

{ 
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 mat <- as.timeSeries(returns.2012) 

} 

 if( year == 2013) 

{ 

 mat <- as.timeSeries(returns.2013) 

} 

 if( year == 2014) 

{ 

 mat <- as.timeSeries(returns.2014) 

} 

 

 coeff.est <- matrix(NA,nrow=ncol(mat),ncol=1) 

 name <- colnames(mat) 

 rownames(coeff.est) <- name 

 colnames(coeff.est) <- c("Sigma.E") 

  

 

 for (i in 1:ncol(mat)) 

 { 

 fit <- garchFit(formula= ~ garch(1,1) ,data=mat[,i],cond.dist="std") 

 coeff.est[i,1] <- mean(fit@sigma.t)*sqrt(252) 

} 

 equity.volatility <- matrix(coeff.est) 

 colnames(equity.volatility) <- c("equitty.vol") 

 rownames(equity.volatility) <- colnames(mat) 

 return(equity.volatility) 

  

 } 

 

> # we now combine the estimates of equity volatility along with the debt 

structrues of the companies as recorded in Company.Structure. 

 

> data.inputs.2009 <- 

cbind(vol.estimate(,2009),data.inputs.2009[,2:ncol(data.inputs.2009)]) 

> data.inputs.2010 <- 

cbind(vol.estimate(,2010),data.inputs.2010[,2:ncol(data.inputs.2010)]) 

> data.inputs.2011 <- 

cbind(vol.estimate(,2011),data.inputs.2011[,2:ncol(data.inputs.2011)]) 

> data.inputs.2012 <- 

cbind(vol.estimate(,2012),data.inputs.2012[,2:ncol(data.inputs.2012)]) 

> data.inputs.2013 <- 

cbind(vol.estimate(,2013),data.inputs.2013[,2:ncol(data.inputs.2013)]). 

> data.inputs.2014 <- 

cbind(vol.estimate(,2014),data.inputs.2014[,2:ncol(data.inputs.2014)]) 

 

A2 MERTON MODEL 

> # we now create the variables required in order to solve simultaneous equa-

tions for sigma and vt. the volatolity of asset value and the asset value of 

the firm 

> merton.solve 

function (mat,year,T,D.mult=1,Vol.mult=1)  

{ 

# function that solves for the merton model probability of default under risk 

free rate r specified in the default 

if( year == 2009) 

{ 

mat <- data.inputs.2009 

r <- riskfree.rate.2009 
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} 

if( year == 2010) 

{ 

mat <- data.inputs.2010 

r <- riskfree.rate.2010 

} 

if( year == 2011) 

{ 

mat <- data.inputs.2011 

r <- riskfree.rate.2011 

} 

if( year == 2012) 

{ 

mat <- data.inputs.2012 

r <- riskfree.rate.2012 

} 

if( year == 2013) 

{ 

mat <- data.inputs.2013 

r <- riskfree.rate.2013 

} 

if( year == 2014) 

{ 

mat <- data.inputs.2014 

r <- riskfree.rate.2014 

} 

 

 

# create an output matrix for the paramaters we are estimating as output of 

convergence 

mer.est1 <- matrix(NA,nrow=nrow(mat),ncol=6) 

rownames(mer.est1) <- rownames(mat) 

colnames(mer.est1) <- c("Vt","SigmaV","conv","L","RN Pd","RW Pd") 

 

# now estimate expected return on each company for given risk free interest 

rate 

Mu <- return.estimate(,r,year) 

 

 

# for loop to run through each company 

for(i in 1:nrow(mat)) 

{ 

# creating simulatenous equations to be solved under merton model 

simultaneous.equations.merton <- function (x)  

 { 

  R <- r # set interest rate to specified one 

  T1 <- T # merton implicitly calculates over 1 year period 

  sigmaS <- mat[i,1]*Vol.mult # input company[i] equity volatili-

ty 

  S0 <- mat[i,2] # input comp[i] equity value 

  D <- mat[i,3]*D.mult # input comp[i] debt value multiplied by 

the stress factor 

  

  y <- numeric(2) 

 

  L  <- exp(-R*T1)*D/x[1]  

  d1 <- (log(1/L)+(0.5*(x[2]^2))*T1)/(x[2]*sqrt(T1)) 

  d2 <- d1 -x[2]*sqrt(T1) 

   

  # simultaneous equations to be solved that yield Vt and SigmaT  

  y[1] <- S0-(x[1]*pnorm(d1)-D*exp(-R*T1)*pnorm(d2)) 
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  y[2] <- sigmaS*(x[1]*pnorm(d1)-D*exp(-R*T1)*pnorm(d2))- 

x[2]*x[1]*pnorm(d1) 

  y 

 

  

 } 

# input starting values by using excel answers as input due to sensitivity of 

starting values and neg vol induction 

xstart <- c(mat[i,2]+mat[i,3],mat[i,1]*(mat[i,2]/(mat[i,2]+mat[i,3]))) 

# create a solutions output vector 

solutions <- 

nleqslv::nleqslv(xstart,simultaneous.equations.merton,method="Newton") 

# fill matrix with estimates required as well as indication of convergence to 

solution in newton method 

mer.est1[i,1] <- solutions$x[1] # Vt estimate 

mer.est1[i,2] <- solutions$x[2] # Sigma est. 

mer.est1[i,3] <- abs(solutions$fvec[1])+ abs(solutions$fvec[2]) # convergence 

reached in sol.  

 

# naming of output variables 

D <- mat[i,3]*D.mult 

Vt <- mer.est1[i,1] 

Sigma <- mer.est1[i,2] 

 

# creating output values for Leverage, Risk neutral pd and real world pd 

mer.est1[i,4] <- exp(-r*T)*D/Vt # leverage 

mer.est1[i,5] <- pnorm((log(D/Vt)-(r-0.5*((Sigma)^2))*T)/(Sigma*sqrt(T))) # 

risk-neutral pd 

mer.est1[i,6] <- pnorm((log(D/Vt)-(Mu[i]-0.5*((Sigma)^2))*T)/(Sigma*sqrt(T))) 

# real world pd 

 

} 

 

 

bloom.pd <- matrix(mat[,5],nrow=nrow(mat),ncol=1) 

colnames(bloom.pd) <- c("BloomPD") 

 

results <- cbind(Mu,mer.est1,bloom.pd) 

 

return(results) 

 

 

} 

A3  DELIANEDIS-GESKE MODEL 

> library("pbivnorm", lib.loc="~/R/win-library/3.2") 

 

 

> DG.solve 

function (mat,year,T1,T2,D.mult=1,Vol.mult=1)  

{ 

# function that solves for the merton model probability of default under risk 

free rate r specified in the default 

p <- sqrt(T1/T2) 

 

 

if( year == 2009) 

{ 

mat <- data.inputs.2009 

r <- riskfree.rate.2009 
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} 

if( year == 2010) 

{ 

mat <- data.inputs.2010 

r <- riskfree.rate.2010 

} 

if( year == 2011) 

{ 

mat <- data.inputs.2011 

r <- riskfree.rate.2011 

} 

if( year == 2012) 

{ 

mat <- data.inputs.2012 

r <- riskfree.rate.2012 

} 

if( year == 2013) 

{ 

mat <- data.inputs.2013 

r <- riskfree.rate.2013 

} 

if( year == 2014) 

{ 

mat <- data.inputs.2014 

r <- riskfree.rate.2014 

} 

 

# create an output matrix for the paramaters we are estimating as output of 

convergence 

DG.est <- matrix(NA,nrow=nrow(mat),ncol=10) 

rownames(DG.est) <- rownames(mat) 

colnames(DG.est) <- 

c("Vt","V*","Sigma","Conv","RN.S","RN.Total","RN.LT","RW.S","RW.Total","RW.LT

") 

 

# now estimate expected return on each company for given risk free interest 

rate 

Mu <- return.estimate(,r,year) 

 

 

# for loop to run through each company 

for(i in 1:nrow(mat)) 

{ 

# creating simulatenous equations to be solved under Delianedis and Geske 

model 

simultaneous.equations.DG <- function (x)  

 { 

  R <- r # set interest rate to specified one 

  T1 <- T1 # short term debt over 1 year 

  sigmaS <- mat[i,1]*Vol.mult # input company[i] equity volatili-

ty 

  S0 <- mat[i,2] # input comp[i] equity value 

  D1 <- mat[i,3]*D.mult # input comp[i] short term debt value 

  D2 <- mat[i,4]*D.mult # input comp[i] long term debt value 

   

  y <- numeric(3) 

 

  B2t1 <- D2*exp(-R*(T2-T1)) 

  p <- sqrt(T1/T2) 

  d1 <- (log(x[1]/x[2])+(R+0.5*((x[3])^2))*T1)/(x[3]*sqrt(T1)) 

  d2 <- (log(x[1]/D2)+(R+0.5*((x[3])^2))*T2)/(x[3]*sqrt(T2)) 
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  # simultaneous equations to be solved that yield Vt and SigmaT 

and V* 

  y[1] <- S0 - 

(x[1]*pbivnorm(d1+x[3]*sqrt(T1),d2+x[3]*sqrt(T2),p)-D2*exp(-

R*T2)*pbivnorm(d1,d2,p)-D1*exp(-R*T1)*pnorm(d1))   

  y[2] <- sigmaS*S0-pnorm(d1)*x[1]*x[3] 

  y[3] <- x[2]- (D1 + B2t1)  

   

  y 

 } 

# input starting values  

xstart <- c(mat[i,2]+mat[i,3]+mat[i,4],mat[i,2],mat[i,1]) 

# create a solutions output vector 

solutions <- 

nleqslv::nleqslv(xstart,simultaneous.equations.DG,method="Newton") 

# fill matrix with estimates required as well as indication of convergence to 

solution in newton method 

DG.est[i,1] <- solutions$x[1] # Vt estimate 

DG.est[i,2] <- solutions$x[2] # V* est. 

DG.est[i,3] <- solutions$x[3] # Sigma est. 

DG.est[i,4] <- abs(solutions$fvec[1])+ abs(solutions$fvec[2])+ 

abs(solutions$fvec[3]) 

 

# creating names of output variables 

Vt <- DG.est[i,1]  

Vstar <- DG.est[i,2]  

Sigma <- DG.est[i,3] 

D2 <- mat[i,4]*D.mult # input comp[i] long term debt value 

rn.d1 <- (log(Vt/Vstar)+(r+0.5*((Sigma)^2))*T1)/(Sigma*sqrt(T1)) 

rn.d2 <- (log(Vt/D2)+(r+0.5*((Sigma)^2))*T2)/(Sigma*sqrt(T2)) 

rw.d1 <- (log(Vt/Vstar)+(Mu[i]+0.5*((Sigma)^2))*T1)/(Sigma*sqrt(T1)) 

rw.d2 <- (log(Vt/D2)+(Mu[i]+0.5*((Sigma)^2))*T2)/(Sigma*sqrt(T2)) 

 

# risk neutral and real world probabilities 

DG.est[i,5] <- 1-pnorm(rn.d1) 

DG.est[i,6] <- 1-pbivnorm(rn.d1,rn.d2,p) 

DG.est[i,7] <- 1-pbivnorm(rn.d1,rn.d2,p)/pnorm(rn.d1) 

 

 

DG.est[i,8] <- 1-pnorm(rn.d1) 

DG.est[i,9] <- 1-pbivnorm(rw.d1,rn.d2,p) 

DG.est[i,10] <- 1-pbivnorm(rw.d1,rn.d2,p)/pnorm(rn.d1) 

 

} 

 

bloom.pd <- matrix(mat[,5],nrow=nrow(mat),ncol=1) 

colnames(bloom.pd) <- c("BloomPD") 

results <- cbind(Mu,mer.est1,bloom.pd) 

 

return(results) 

 

 

} 
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A4 GRAPHICS 

A4.1 Merton 3D-graphics and level curves 

> merton.graph 

#function to create 3-D graphic of Merton PD as function of leverage and vol-

atility 

function (start=0,end=1,len=70,theta=0,phi=30)  

{ 

pts <-seq(from=start,to=end,len=len) 

fun1 <-function(x,y) 

{ 

 pnorm(-(log(1/x)+(0.5*(y^2))*1)/(y*sqrt(1))+y*sqrt(1)) 

 } 

zz <- outer(pts,pts,fun1) 

persp(x=pts,y=pts,z=zz,theta=theta,phi=phi,ticktype="detailed",xlab="Leverage

",ylab="Firm Volatility") 

} 

 

> merton.contour 

#function to create graphic of contour levels of Merton PD for leverage and 

volatility combinations. 

function (level=0.00001)  

{ 

f <-function(x,y) 

{ 

 pnorm(-(log(1/x)+(0.5*(y^2))*1)/(y*sqrt(1))+y*sqrt(1)) 

 } 

 x <- seq(0,1,length=100) 

 y <- x 

 z <- outer(x,y,f) 

 con-

tour(x=x,y=x,z=z,levels=level,drawlabels=FALSE,lwd=3,xlab="Leverage",ylab="Fi

rm Value Volatility") 

 

 } 

 

A4.2 D&G 3D-graphics and level curves 

> DG.graphic.total 

#function to create 3-D graphic of D&G total PD as function of leverage and 

volatility for given short run leverage 

 

function (start=0.00001,end=1,len=70,theta=0,phi=30)  

{ 

pts <-seq(from=start,to=end,len=len) 

require(pbivnorm) 

{ 

p <- sqrt(1/5) 

d1 <-  ((log(1/0.2)+(0.5*(y^2))*1)/(y*sqrt(1))+y*sqrt(1)) 

d2 <- (-(log(1/x)+(0.5*(y^2))*4)/(y*sqrt(4))+y*sqrt(4)) 

pbivnorm(d1,d2,p) 

 } 

zz <- outer(pts,pts,fun1) 

persp(x=pts,y=pts,z=zz,theta=theta,phi=phi,ticktype="detailed",xlab=" long-

term leverage",ylab="Firm Volatility") 

 

 

} 
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> DG.contour 

#function to create graphic of contour levels of D&G total PD for leverage 

and volatility combinations of a given short run leverage. 

 

function (level=0.0001)  

{ 

f <-function(x,y) 

{ 

 

p <- sqrt(1/5) 

d1 <-  ((log(1/0.2)+(0.5*(y^2))*1)/(y*sqrt(1))+y*sqrt(1)) 

d2 <- (-(log(1/x)+(0.5*(y^2))*4)/(y*sqrt(4))+y*sqrt(4)) 

pbivnorm(d1,d2,p) 

 } 

 x <- seq(0.000001,1,length=100) 

 y <- x 

 z <- outer(x,y,f) 

 con-

tour(x=x,y=x,z=z,levels=level,drawlabels=FALSE,lwd=3,xlab="Leverage",ylab="Fi

rm Value Volatility") 

 

 } 
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APPENDIX B: 

 Merton Model Results 

B1 MERTON RESULTS ONE-YEAR DEFAULT PROBABILITIES 

Figure B.1 Merton model(s) one-year default probabilities for 2009-2014 
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Table B.1: AMS results Merton models 

 
2009 2010 2011 2012 2013 2014 

equit-
ty,vol 

0,4796403 0,4830579 0,4484845 0,4207861 0,3486897 0,3178090 

ET 46,0000000 64,5500000 80,5000000 87,8000000 98,8900000 97,8600000 

D1 36,7479918 39,0929091 65,4325426 65,706543 73,7206648 75,20358623 

D2 153,1386162 85,8056593 66,8315438 89,467214 94,9795064 95,5968257 

BloomPD 0,006239271 0,0012333 0,00120251 0,0031786 0,00189367 0,001584752 

Merton L 0,407456051 0,3528656 0,42624157 0,4061624 0,40643453 0,413785286 

Merton 
RnPd 0,001284419 0,0007493 0,00072587 0,0002503 1,0854E-05 1,71506E-06 

Merton 
RwPd 0,00120635 0,0007504 0,00071725 0,000251 1,194E-05 1,73985E-06 

Merton 
kmv L 0,679690213 0,5335773 0,52883008 0,5348111 0,52959612 0,535854181 

Merton 
kmv RnPd 0,007729974 0,0038042 0,00183018 0,0009757 7,4392E-05 1,62138E-05 

Merton 
kmv 
RwPd 0,007018288 0,0038110 0,00180574 0,0009786 8,2922E-05 1,64814E-05 

Merton 
Total L 0,780608697 0,6354562 0,60031386 0,6176568 0,61043098 0,615847518 

Merton 
Total 
RnPd 0,011391182 0,0066731 0,00296551 0,001803 0,00018172 4,62608E-05 

Merton 
Total 
RwPd 0,009961104 0,0066873 0,00292099 0,0018093 0,0002057 4,71349E-05 

M Sigma 
V 0,284364386 0,3126896 0,25740529 0,249905 0,20697111 0,186304423 

M kmv 
Sigma V 0,154528507 0,2258017 0,21153045 0,1958533 0,16403172 0,147511027 

M Tot 
Sigma V 0,106291383 0,1769168 0,17959746 0,161077 0,13585455 0,122090731 
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B2 MERTON RESULTS FIVE-YEAR DEFAULT PROBABILITIES 

Figure B.2 Merton model(s) five-year default probabilities for 2009-2014 
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APPENDIX C: 

 Delianedis & Geske Results 

C1 D&G RESULTS ONE-YEAR DEFAULT PROBABILITIES 

Figure C.1 D&G model(s) short run default probabilities for 2009-2014 
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Table C.1: AMS results D&G models 

 2009 2010 2011 2012 2013 2014 

DG Vt 149,8122004 150,4102082 182,901247 204,88694 228,697323 229,4336018 

DK 
kmv Vt 215,8050168 189,0872239 213,4344 245,76867 272,316854 273,3369059 

DG V* 120,7922463 95,47124471 112,059329 128,1257 141,324259 143,2465697 

DG 
Kmv V* 197,3615544 138,3740744 145,4751 172,85931 188,814012 191,0449826 

 DG 
Sigma 0,148092997 0,207846669 0,19762983 0,1804472 0,15078498 0,135556687 

DG 
kmv 
Sigma 0,103150755 0,165674055 0,16949257 0,1505202 0,12664249 0,113786283 

 DG 
RN,S 0,005529798 0,002586892 0,00120996 0,00071 6,372E-05 1,52484E-05 

DG 
kmv 
RN,S 0,008849667 0,004643255 0,00200519 0,0013012 0,00014385 3,87696E-05 

DG 
Short 
term L 0,693981195 0,571471204 0,55994432 0,5715253 0,56759767 0,573471945 

DG 
kmv 
short 
term L 0,787148819 0,658857695 0,62292785 0,6428057 0,63686102 0,641981231 

DG 
Long 
term 
lever-
age 0,598723483 0,491219439 0,46109748 0,4829159 0,48225783 0,486694833 

DG 
kmv 
long 
term 
lever-
age 0,415634834 0,390742519 0,39513455 0,4025865 0,40501009 0,408522033 

Bloom
PD 0,006239271 0,001233279 0,00120251 0,0031786 0,00189367 0,001584752 
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C2 D&G RESULTS TOTAL DEFAULT PROBABILITIES 

Figure C.2 D&G model(s) total default probabilities for 2009-2014 
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