
Estimating Expected Exposure for Counterparty Credit Risk 

Adjustments 

 

 

 

 

Lian Smit 

 

 

 

Report presented in partial fulfilment 

of the requirements for the degree of 

BCommHons (Financial Risk Management)  

at the University of Stellenbosch 

 

 

 

 

Supervisor: Mr C.J. van der Merwe 

        

 

 

 

Degree of confidentiality: A                                                     October 2014 



ii 

 

PLAGIARISM DECLARATION 

 

1. Plagiarism is the use of ideas, material and other intellectual property of another’s work and 

to present it as my own.  

2. I agree that plagiarism is a punishable offence because it constitutes theft.  

3. I also understand that direct translations are plagiarism.  

4. Accordingly all quotations and contributions from any source whatsoever (including the 

internet) have been cited fully. I understand that the reproduction of text without quotation 

marks (even when the source is cited) is plagiarism.  

5. I declare that the work contained in this assignment, except otherwise stated, is my original 

work and that I have not previously (in its entirety or in part) submitted it for grading in this 

module/assignment or another module/assignment.  

 

  

Student number Signature 

15582213  

Name and surname  
 

Date 

Lian Smit  

 

 
 
 
 
 
 
 
 

Copyright © 2014 Stellenbosch University 
All rights reserved 

 



iii 

 

Acknowledgements 

The author would like to thank the following people for their contribution towards this project: 

 My supervisor, Carel van der Merwe at Ernst & Young, for providing me with the topic of 

this research project as well as his time and guidance throughout the year. 

 Laura Wigmore for all her contributions towards structuring and proofreading. 

 Prof. W.J. Conradie and Dr. J.D. van Heerden for their support and guidance during the 

rest of my studies. 

 To all my friends and family for their support during this project.  



iv 

 

Abstract 

Counterparty credit risk (CCR) forms an integral part of the current financial market. CCR is 

already widely implemented by banks under the Basel Committee of Banking Supervision 

guidelines. The International Accounting Standards Board has introduced IFRS 13, which 

subsequently requires all financial entities to use fair value adjustments to account for CCR. In 

this paper the methods to estimate expected exposure (𝐸𝐸) of interest rate swaps for credit 

valuation adjustments (CVA) are discussed and compared to attempt to find the most 

appropriate method to be adopted by smaller non-financial organisations.  

A model is developed to estimate 𝐸𝐸 with the Monte Carlo methodology using the Vasicek short 

rate model. The more computationally intensive Monte Carlo method is then compared to add-

on methodologies such as the current exposure method (CEM) and expansions thereof. 

Thereafter, the CVA values are calculated using each method and compared. Finally, the 

results of each method were presented and then discussed in terms of accuracy and simplicity.  

It was found that when comparing the 𝐸𝐸 estimated with the simple CEM method to the Monte 

Carlo method, the results were inaccurate. However, by making simple modifications to the 

simple CEM method, the accuracy of estimation can be improved greatly. Therefore, although 

the Monte Carlo method is still more accurate, smaller non-financial organisations with resource 

constraints and fewer technical abilities could use the modified CEM method an approximation 

for CVA.  

Key words:  

CCR; CVA; Expected Exposure; CEM; Monte Carlo; Vasicek; Interest Rate Swap; IFRS 
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Opsomming 

Teenparty-kredietrisiko vorm ‘n integrale deel van die finansiële mark en word reeds deur banke 

geïmplementeer om aan die Basel-Komittee vir Banktoesighouding riglyne te voldoen. Die 

Internasionale Rekeningkundige Standaarde Raad het IFRS 13 ingestel, wat gevolglik vereis 

dat alle finansieële instansies billikewaarde-aanpassings gebruik om vir CCR voorsiening te 

maak. Die metodes om die verwagte blootstelling van rentekoersruiltransaksies, vir 

krediewaarde-aanpassings, te beraam word in hierdie navorsingstuk bespreek en vergelyk om 

moontlik die mees toepaslike metode te vind wat deur kleiner nie-finansiële organisasies 

gebruik kan word.  

Die Vasicek model is gebruik om ‘n Monte Carlo model te ontwikkel om die verwagte 

blootstelling te beraam. Hierdie model wat meer intesief in terme van berekening is word 

vergelyk met ander metodes soos die Huidige Blootstellings Metode en uitbreidings van die 

metode. Die waardes van die kredietwaarde-aanpassings word daarna bereken. Die resultate 

van elke metode word voorgestel en bespreek in terme van eenvoud en akkuraatheid.  

Daar is gevind dat wanneer die gewone huidige blootstellings metode met die Monte Carlo 

metode vergelyk word, is die resultate onakkuraat. Daar kan egter eenvoudige aanpassings aan 

die Huidige Blootstellings Metode gemaak word wat die akkraatheid aansienlik verbeter. Dus, 

kan die aangepaste Huidige Blootstellings Metode deur kleiner nie-finansiële organisasies met 

beperkte hulpbronne gebruik word. 

Sleutelwoorde: 

Teenparty-kredietrisiko; Verwagte Blootstelling; Monte Carlo; Rentekoersruiltransaksie; IFRS 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

The concept of default and its financial repercussions have been well established in history and 

understood by investors. There have been many examples, including Sovereign entities such as 

Russia (1998) and Argentina (2001), and Corporates such as Long Term Capital Management 

(1998), WorldCom Inc. (2002), and Lehman Brothers (2008). These types of default events and 

the subsequent financial implications lead to the development of credit risk management 

(FinancialCAD Corporation, 2011:2). 

One of the primary focus points of Basel III rules on minimum capital requirements issued by the 

Basel Committee of Banking Supervision has been counterparty credit risk (CCR). CCR is 

defined as the risk that the counterparty will fail to fulfil an obligation in the future (Deloitte, 

2013:1). The effort to quantify CCR has resulted in a divergence between accounting and 

regulatory standards (Shearman & Sterling, 2013:2). As a result, the International Accounting 

Standards Board issued IFRS 13 Fair Value Measurement to reduce the inconsistencies applied 

in practice and to unite international and US accounting treatments (Gregory, 2012:272). 

IFRS 13 has implemented the use of fair value adjustments for the risk of counterparty default 

as well as for the institutions own non-performance risk. These adjustments, which account for 

CCR, are referred to as credit valuation adjustment (CVA) and debit valuation adjustment 

(DVA). CVA is essentially an adjustment to the measurement of derivative assets to reflect the 

default risk of the counterparty whereas DVA is an adjustment to the measurement of derivative 

liabilities to reflect the own default risk of the entity (Kengla and De Jonghe, 2013:4).  

Many banks have already accounted for CCR in their annual financial statements (AFS) but the 

recent global financial crisis has forced a more active and accurate approach and thus 

dynamically pricing CCR directly into new trades (Algorithmics, 2009:2). While CVA pricing 

methodologies are well advanced, they are still not standardised and may vary amongst market 

participants, ranging from relatively simple to highly complex methodologies that are driven 

largely by the sophistication and resources available to the market participant (Gregory, 

2012:157). Depending on the particular market participant, CVA can be significant, particularly 

for large financial institutions that are highly active in the derivative markets (FinancialCAD 

Corporation, 2011:3). 

This study aims to standardise the methodology used when quantifying expected exposure (𝐸𝐸) 

for CVA for market participants such as smaller non-financial organisations that cannot afford to 

implement advanced models. Further, considering the definition of DVA, the assumption will be 
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made that the method for calculating DVA is similar to CVA and therefore this study will only 

focus on CVA. 

1.2 PROBLEM STATEMENT 

In order to determine CCR fair value adjustments, institutions need to quantify and measure the 

exposure that could be lost if the counterparty defaults. Thus, the 𝐸𝐸 needs to be estimated. In 

broad terms, 𝐸𝐸 is the exposure to the counterparty at the point of default – this could be either 

positive or negative (Gregory, 2012:127). There are numerous techniques for calculating 𝐸𝐸 for 

CVA and determining which 𝐸𝐸 methodology to implement is often driven by the institution’s 

sophistication, technical ability and resource constraints. These approaches range from 

simplistic to advanced, while the level of accuracy is mostly dependent on the method. 

Determining a point where the compromise of accuracy can be justified by the level of simplicity 

will be beneficial to the market participants and will contribute to standardising the methodology 

for estimating CVA across the market.  

1.3 RESEARCH OBJECTIVES 

The aim of this research assignment is to attempt to investigate the most efficient method for 

calculating 𝐸𝐸 in terms of the level of sophistication, accuracy and the operational 

considerations. By applying a the more simplistic methodology such as current mark-to-market 

(MtM) plus an add-on to an interest rate swap between an institution and counterparty, it can be 

compared to the more complex Monte Carlo approach to quantifying 𝐸𝐸. The effects of netting 

and collateral agreements on 𝐸𝐸 will also be discussed briefly. The methods will be compared 

in order to recommend the one with the optimal trade off between the levels of simplicity versus 

the level of accuracy when estimating 𝐸𝐸.  

1.4 IMPORTANCE/BENEFITS OF THE STUDY 

IFRS 13 issued by the International Accounting Standards Board (IASB) have greatly 

emphasised CCR. As a result, all financial entities will need to comply with the new CCR 

regulations. These changes have been widely accepted in Europe, but are yet to be commonly 

implemented in South Africa by smaller non-financial organisations and in other developing 

countries due to the numerous methodologies available, operational constraints and insufficient 

resources of smaller entities. CCR has rapidly become the problem of all financial institutions, 

big or small, since there has been an increase in hedging and a tightening of traditional risk 

mitigation methods (Algorithmics, 2009:5). The rapid growth in the over-the-counter (OTC) 

derivatives market has been reversed, at least temporarily, which emphasizes the need for 

better CCR management, as this will allow trading activity to increase while reducing the chance 

of significant future losses or systemically driven market disturbances (Algorithmics, 2009:5). 
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1.5 RESEARCH DESIGN AND METHODOLOGY 

The research assignment will be based on four parts. The first part will consist of an in depth 

literature review covering the necessary theoretical knowledge required on estimating 𝐸𝐸. The 

second part will focus on the design and building of a programme in a statistical software 

package to price a plain vanilla interest rate swap. To price the swap, the underlying variables 

such as the Johannesburg Inter Bank Agreed Rate (JIBAR) interest rate, the swap rate, 

maturity, payment frequency and the notional amount will be used. The third part of the 

research assignment will entail applying each method to estimate 𝐸𝐸, including the Monte Carlo 

method, considered in the literature review. To estimate 𝐸𝐸 with the Monte Carlo method, a 

programme will also be written in a statistical software package to simulate the value of the 

swap at the payment dates in the future by simulating the swap curve. 

The time horizon until the point of default, which will be assumed in all estimations of 𝐸𝐸, will be 

varied to compare the different methods for short-term and long-term interest rate swaps.  This 

research assignment will focus on estimating the 𝐸𝐸 and thus the probability of default (𝑃𝐷) of 

the counterparty, as well as the loss given default (𝐿𝐺𝐷), will be assumed as an arbitrary value. 

This assumption will be consistent in all calculations of CVA. Consequently, the 𝑃𝐷 and 𝐿𝐺𝐷 

can be stressed to examine the effect on the value of CVA. Finally, the data output from each 

method will be compared to determine the most appropriate method for estimating 𝐸𝐸. 

1.6 CONCLUSION 

This chapter gave an introduction and background, as well as the problem statement to for this 

study. The next chapter focuses on the review of literature for the estimation of exposure. In the 

chapter thereafter, a discussion on the specific methodology employed in the study will be 

provided. The results of the different methodologies for estimating exposure as well as the 

comparison will be discussed in the penultimate chapter and then concluded in the final chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Credit valuation adjustment (CVA) is an adjustment to the measurement of derivative assets to 

reflect the default risk of the counterparty. Quantifying CVA is relatively simple, consisting of the 

combination of the probability of default (𝑃𝐷), the loss given default (𝐿𝐺𝐷) and exposure. 

According to Gregory (2012:157), a balance between the following two effects lies at the heart 

of quantifying exposure: 

 When observing the future, the market variables become increasingly uncertain. Hence, risk 

increases when moving through time.  

 Many financial instruments have cash flows that are paid over time and this tends to reduce 

risk profiles as the instruments amortise through time.  

In the first section basic definitions that are necessary to understanding CVA will be given. 

Thereafter the formal definition of CVA will be discussed followed by discussions on 𝑃𝐷 and 

𝐿𝐺𝐷. In the sections that follow, the various methods to quantify exposure such as mark-to-

market (MtM) value plus add-on and Monte Carlo methodology will be elaborated on.  

2.2 BASIC DEFINITIONS 

2.2.1 The Money Market Account  

Let 𝐵𝑡 be the value of 1 unit of money at time 𝑡, invested in the account at time zero. The money 

market account is assumed to evolve under the following differential equation 

 𝑑𝐵𝑡 = 𝑟𝑡𝐵𝑡𝑑𝑡, (2.1) 

where 𝑟𝑡 is the instantaneous interest rate at time 𝑡, known as the short rate. Therefore, the 

value at time 𝑡 of the money market account at time 𝑡 is 

 
𝐵𝑡 = exp (∫ 𝑟𝑠𝑑𝑠

𝑡

0

) (2.2) 

 (Brigo and Mercurio, 2006:2; Jones, 2010:11). 
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2.2.2 Zero Rates 

The 𝑡-year zero-coupon interest rate, 𝑅(0, 𝑡), is the rate of interest earned on an investment that 

starts today and lasts for 𝑡 years. All the interest and principal is realised at the end of the 𝑡 

years (Hull, 2009:78). Formally, the continuously compounded zero rate at time 𝑡 for maturity 𝑇, 

denoted 𝑅(𝑡, 𝑇), is the constant which rate of interest an investment of 𝑃(𝑡, 𝑇) at time 𝑡 would 

need to earn to yield 1 unit of money at time 𝑇, i.e. 

 𝑃(𝑡, 𝑇) = 1 ∙ 𝑒−𝑅(𝑡,𝑇)(𝑇−𝑡) 

⟹ 𝑅(𝑡, 𝑇) = −
1

𝑇 − 𝑡
ln (𝑃(𝑡, 𝑇)) 

(2.3) 

(Jones, 2010:11). 

2.2.3 Forward Rates 

Forward rates are interest rates implied by the current zero rates for certain periods of time in 

the future and denoted by 𝐹(𝑇𝑖−𝛿 , 𝑇𝑖) (Hull, 2009:82) and calculated as 

 
𝐹(𝑇𝑖−𝛿 , 𝑇𝑖) =

𝑅(0, 𝑇𝑖)𝑇𝑖 − 𝑅(0, 𝑇𝑖−𝛿)𝑇𝑖−𝛿

𝑇𝑖 − 𝑇𝑖−𝛿
, (2.4) 

where 𝛿 denotes one period of time. 

2.2.4 Definition of an Interest Rate Swap 

An interest rate swap (IRS) is an agreement between two parties to exchange cash flows in the 

future. The agreement defines the dates the cash flows are to be paid on and the way the 

payments are to be calculated. A plain vanilla IRS is when a party agrees to pay a cash flow 

equal to a predetermined fixed rate on a notional principal for a number of years. The same 

party in return receives interest at a floating rate on the same notional principal for the same 

period (Hull, 2009:147). 

According to Jones (2010:14), in the South African market the fixed and floating legs are 

typically exchanged quarterly. Figure 2.1 below illustrates a plain vanilla IRS where party A pays 

the fixed rate (5%) and receives the floating JIBAR plus a spread, whilst party B pays the 

floating JIBAR plus a spread and receives the fixed rate. 
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Figure 2.1: Illustration of a plain vanilla IRS 

2.2.5 LIBOR and JIBAR 

The London Inter Bank Bid-Offer Rate (LIBOR) is defined as the rate at which a bank is willing 

to lend to other banks in London (Hull, 2009:147). This rate is published daily for a range of 

borrowing periods. JIBAR is the South African equivalent of LIBOR. 

2.2.6 Risk-neutral Valuation  

In a risk neutral world all individuals are indifferent to risk and do not need compensation for 

risk. Hence, the expected return on all investments is just the risk-free rate (Van der Merwe, 

2010:76). It is therefore true that the present value of any cash flow in a risk neutral world can 

be obtained by discounting its expected value with the risk-free interest rate (Hull, 2009:290). 

A derivative with a payoff at a particular time can then be valued using risk-neutral valuation by 

using the following procedure: 

1. Assume that the expected return on the underlying asset is the risk-free interest rate. 

2. Calculate the expected payoff of the derivative. 

3. Discount the expected payoff at the risk-free interest rate. 

Risk-neutral valuation and the expectation with respect to the risk-neutral world will be formally 

presented in Appendix A. When there is a move from the risk-neutral world to a risk-averse 

world, the expected growth of a stock price changes and the discount rate to be used for the 

derivative payments changes. These changes offset each other exactly, implying that that the 

risk-neutral valuation assumption is valid in all worlds. Therefore, risk-neutral valuation is 

appropriate to use for the simulation (Hull, 2009:290).  

2.3 CREDIT VALUATION ADJUSTMENT 

Traditionally, the price of a derivative has been calculated using risk-neutral pricing. This yields 

the fair value that has been offered to other market participants without adjustments to account 

for counterparty credit risk (CCR) (Ahlberg, 2013:7; Gregory, 2012:241). With the introduction of 

CVA, the CCR can therefore be incorporated in the fair valuation of financial assets.  
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2.3.1 Definition Of Credit Valuation Adjustment 

The CVA of a derivative is defined as the difference between the risk-free value, when 

assuming no CCR, and the risky value defined as, 

 �̃�(𝑡, 𝑇) = 𝑉(𝑡, 𝑇) − 𝐶𝑉𝐴(𝑡, 𝑇), (2.5) 

where 𝑉(𝑡, 𝑇) denotes the risk-free fair value of the derivative contract at time 𝑡 with a maturity 

date at time 𝑇.  

To derive Equation 2.5, denote the default time of the counterparty as 𝜏 and 𝑉(𝑠, 𝑇), 𝑡 ≤ 𝑠 ≤ 𝑇 as 

the future uncertain fair value at time 𝑠, accounting for the effects of discounting. Firstly, 

consider the case where the counterparty does not default before time 𝑇, where the risky 

position is equivalent to the risk-free position and write the payoff as 

 𝐼(𝜏 > 𝑇)𝑉(𝑡, 𝑇), (2.6) 

where 𝐼(𝜏 > 𝑇) is the indicator function denoting default. Secondly, consider the case where the 

counterparty defaults before time 𝑇, where the payoff consists of two terms, the value of the 

position that would be paid before the default time, i.e.  

 𝐼(𝜏 ≤ 𝑇)𝑉(𝑡, 𝜏), (2.7) 

plus the payoff at the time of default.  If the fair value of the trade at the time of default, 𝑉(𝜏, 𝑇), 

is positive then the institution will receive a recovery fraction, Θ, of 𝑉(𝜏, 𝑇 ). If 𝑉(𝜏, 𝑇) is negative, 

the amount will still need to be settled. Hence, the payoff at the time of default, 𝜏, is 

 𝐼(𝜏 ≤ 𝑇)(Θ𝑉(𝜏, 𝑇)+ + 𝑉(𝜏, 𝑇)−), (2.8) 

where 𝑥− = min (x, 0) and 𝑦+ = max(𝑦, 0).  
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From Equations 2.6, 2.7 and 2.8, it follows that the value of the risky position is 

 

�̃�(𝑡, 𝑇) = 𝐸ℚ [

𝐼(𝜏 > 𝑇)𝑉(𝑡, 𝑇) +
𝐼(𝜏 ≤ 𝑇)𝑉(𝑡, 𝜏) +

𝐼(𝜏 ≤ 𝑇)(Θ𝑉(𝜏, 𝑇)+ + 𝑉(𝜏, 𝑇)−)
] 

= 𝐸ℚ [

𝐼(𝜏 > 𝑇)𝑉(𝑡, 𝑇) +
𝐼(𝜏 ≤ 𝑇)𝑉(𝑡, 𝜏) +

𝐼(𝜏 ≤ 𝑇)(Θ𝑉(𝜏, 𝑇)+ + 𝑉(𝜏, 𝑇) − 𝑉(𝜏, 𝑇)+)
] , 𝑥− = 𝑥 − 𝑥+ 

= 𝐸ℚ [

𝐼(𝜏 > 𝑇)𝑉(𝑡, 𝑇) +
𝐼(𝜏 ≤ 𝑇)𝑉(𝑡, 𝜏) +

𝐼(𝜏 ≤ 𝑇)((Θ − 1)𝑉(𝜏, 𝑇)+ + 𝑉(𝜏, 𝑇))
] 

= 𝐸ℚ [

𝐼(𝜏 > 𝑇)𝑉(𝑡, 𝑇) +
𝐼(𝜏 ≤ 𝑇)𝑉(𝑡, 𝑇) +

𝐼(𝜏 ≤ 𝑇)((Θ − 1)𝑉(𝜏, 𝑇)+)
], 

(2.9) 

where 𝐸ℚ is the expected value is with respect to the risk-neutral world. Finally, since 𝐼(𝜏 >

𝑇)𝑉(𝑡, 𝑇) + 𝐼(𝜏 ≤ 𝑇)𝑉(𝑡, 𝑇) ≡ 𝑉(𝑡, 𝑇), the risky value can be expressed as  

�̃�(𝑡, 𝑇) = 𝑉(𝑡, 𝑇) − 𝐸ℚ[(1 − Θ)𝐼(𝜏 ≤ 𝑇)𝑉(𝜏, 𝑇)+] 

= 𝑉(𝑡, 𝑇) − 𝐶𝑉𝐴(𝑡, 𝑇) 

The equation for CVA is in fact more complex than it seems, as it is not linear (Gregory, 

2012:243). Due to netting and collateral, which will be discussed later, CVA is not an additive 

quantity with respect to individual transactions. Therefore, �̃�(𝑡, 𝑇) cannot be calculated 

individually, since it is defined with respect to other transactions in  the same netting set 

(Gregory, 2012:12A).  

2.3.2  Formula for Credit Valuation Adjustment 

Under the above assumptions, a standard equation for CVA can be derived. Consider again the 

formula for CVA, which can be written as follows 

 𝐶𝑉𝐴(𝑡, 𝑇) = (1 − Θ)𝐸ℚ[𝐼(𝑢 ≤ 𝑇)𝑉∗(𝑢, 𝑇)+], (2.10) 

where Θ is the expected recovery rate and 𝑉∗(𝑢, 𝑇)+ denotes  

𝑉∗(𝑢, 𝑇) = 𝑉(𝑢, 𝑇)|𝜏 = 𝑢 

This is critical in the understanding of exposure estimation, as the above statement requires the 

exposure at a future date given that the counterparty has defaulted at that particular future date. 

In this study 𝑉∗(𝑢, 𝑇) = 𝑉(𝑢, 𝑇), since the effects of wrong-way risk will be ignored, because 

interest rate products have limited wrong-way risk (Gregory, 2012:309). Wrong-way risk is the 

term used for the dependence between exposure and counterparty credit quality. When 

exposure is high, the counterparty is more likely to default (Pykhtin and Zhu, 2007:38).  
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It is now possible to integrate over all possible default times to obtain 

 
𝐶𝑉𝐴(𝑡, 𝑇) = (1 − Θ)𝐸ℚ [∫ 𝐷𝐹(𝑡, 𝑢)𝑉(𝑢, 𝑇)+𝑑𝑃𝐷(𝑡, 𝑢)

𝑇

𝑡

], (2.11) 

where 𝐷𝐹(𝑡, 𝑢) is the risk-free discount factor and 𝑃𝐷(𝑡, 𝑢) is the cumulative default probability 

for the counterparty. Recognise that the discounted 𝐸𝐸 is calculated under risk-neutral measure 

denoted by 𝐸𝐸𝑑(𝑡, 𝑇) = 𝐸ℚ[𝐷𝐹(𝑡, 𝑢)𝑉(𝑢, 𝑇)+] (Pykhtin and Zhu, 2007:38). If it is assumed that all 

probabilities are deterministic, the default time is independent of 𝐷𝐹(𝑡, 𝑢) and therefore 

eliminates the need to simulate the probabilities of default. The formula can then be written as  

 
𝐶𝑉𝐴(𝑡, 𝑇) = (1 − Θ) [∫ 𝐸𝐸𝑑(𝑢, 𝑇)𝑑𝑃𝐷(𝑡, 𝑢)

𝑇

𝑡

] (2.12) 

 

The above equation can then be approximated by Monte Carlo integration (Rizzo, 2008:120), 

such as  

 
𝐶𝑉𝐴(𝑡, 𝑇) ≈ (1 − Θ) ∑ 𝐸𝐸𝑑(𝑡, 𝑡𝑖)[𝑃𝐷(𝑡, 𝑡𝑖) − 𝑃𝐷(𝑡, 𝑡𝑖−1)]

𝑁

𝑖=1

, (2.13) 

 

where 𝑁 is the number of periods given by 𝑖 = 𝑡0, 𝑡1, … , 𝑡𝑁. To work with the non-discounted 

expected exposure at the point of default, simply write 

 
𝐶𝑉𝐴(𝑡, 𝑇) = (1 − Θ) [∫ 𝐸𝐸(𝑢, 𝑇)𝐷𝐹(𝑡, 𝑢)𝑑𝑃𝐷(𝑡, 𝑢)

𝑇

𝑡

] 

≈ (1 − Θ) ∑ 𝐷𝐹𝑡𝑖
𝐸𝐸𝑡𝑖

𝑃𝐷(𝑡𝑖−1, 𝑡𝑖)

𝑁

𝑖=1

, 
(2.14) 

where (1 − Θ) = 𝐿𝐺𝐷, 𝐷𝐹 is the relevant risk-free discount factor, 𝐸𝐸 is the expected exposure 

on the relevant dates and 𝑃𝐷 is the probability of default between specified dates (Gregory, 

2012:243; Pykhtin and Zhu, 2007:22; Ahlberg, 2013:21).  

2.3.3  Summary 

CVA therefore depends on combining these three components from potentially different 

sources. It is crucial to understand that in the derivation of Equation 2.14, the components are 

assumed to be independent (Gregory, 2012:244). In other words, there can be separate 

departments responsible for the 𝐸𝐸, 𝐿𝐺𝐷 and 𝑃𝐷 where none of these departments need to be 

aware of the other.  
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Equation 2.14 also provides a further advantage to the calculation of CVA, which is that 

counterparty default only enters the equation through default probability. This significantly saves 

on computational time, as it is not necessary to simulate the default events, only the 𝐸𝐸 

(Gregory, 2012:244). In the subsequent sections, the 𝐿𝐺𝐷 and 𝑃𝐷 will be discussed briefly, 

followed by an in depth discussion on the various methods to quantify exposure.  

2.4 PROBABILITY OF DEFAULT 

The probability of default (𝑃𝐷) is the likelihood that the counterparty will default during a specific 

period of time or interval. In a financial sense, the counterparty defaults when it is no longer able 

to fulfil its debt obligations (Norman and Chen, 2013:32).  

To define the 𝑃𝐷 mathematically, define the cumulative default probability function, 𝑃𝐷(𝑡), as the 

probability of default at any point prior to time 𝑡 (Ahlberg, 2013:9). The marginal default 

probability, the probability of default between two specified future dates, is given by 

 𝑞(𝑡1, 𝑡2) = 𝑃𝐷(𝑡2) − 𝑃𝐷(𝑡1), (𝑡1 < 𝑡2), (2.15) 

which is illustrated graphically in Figure 2.2. Note that, 𝑃𝐷(. ) for a counterparty which has not 

yet defaulted must be monotonically increasing with 𝑃𝐷(0) = 0 and lim
𝑡→∞

𝑃𝐷(𝑡) = 1 to avoid 

negative marginal default probabilities (Ahlberg, 2013:9; Gregory, 2012:198).  

 

Figure 2.2: The Marginal Default Probability 

Source: Gregory, 2012:198 

 



11 

 

 

The probability of default can be defined as real world and risk-neutral default probabilities. 

Real-world default probabilities are estimated from historical data, whilst risk-neutral default 

probabilities are reflecting parameters derived from market prices. According to Hull (2012:529-

530), the question regarding which default probabilities to use, depends on the purpose of the 

analysis. Risk-neutral default probabilities should be used when valuing credit derivatives or 

estimating the impact of default risk. When calculating potential future losses by carrying out 

scenario analysis, real-world default probabilities should be used. Therefore, risk-neutral default 

probabilities should be used when calculating CVA.  

2.5 RECOVERY RATES AND LOSS GIVEN DEFAULT 

In the case where the counterparty defaults, there will generally be a fraction of the outstanding 

claim recovered. This is known as the recovery rate, denoted by Θ. Recovery rates can also be 

expressed as the loss given default or 𝐿𝐺𝐷, defined (Ahlberg, 2013:11) as 

 𝐿𝐺𝐷 = 1 − Θ (2.16) 

The recovery rate is essentially the ratio of the exposure that would be recovered in the event of 

default and therefore 𝐿𝐺𝐷 is the ratio of the exposure that would be lost.  

Recovery rates are an important component in the calculation of CVA, but it can be difficult to 

estimate precisely (Norman and Chen, 2013:31). To estimate recovery rates, the norm is to look 

to historical analysis and like default probabilities, the values show significant variation over 

time. Recovery rates also tend to be negatively correlated with default rates, which means a 

high default rate will give rise to a lower recovery value. This negative correlation coupled with 

the random nature of default probability and recovery rates creates strong variability in default 

losses (Gregory, 2012:209-210).    

2.6 DEFINITION OF CREDIT EXPOSURE 

Credit exposure is simply defined as the loss in the event of the counterparty defaulting 

(Gregory, 2012:121). Exposure is characterised by the fact that a positive value of a financial 

instrument corresponds to a claim on a defaulted counterparty, whereas a negative value, an 

institution is still obliged to honour the contractual agreement (Norman and Chen, 2013:30-31). 

Hence, an asymmetry of potential losses arises. It is very important to note that exposure is 

conditional on counterparty default. Exposure at time 𝑡, conditional on counterparty default, can 

simply be defined (Pykhtin and Zhu, 2007:17) as 

 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝑡) = max(𝑉(𝑡, 𝑇), 0), (2.17) 
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where 𝑉(𝑡, 𝑇) is the fair value of the contract at time 𝑡. Since the value of the contract is a risk-

neutral expectation, the exposure is also a risk-neutral expectation (Ahlberg, 2013:8). 

There are methods to define exposure more specifically that are given in the Basel Committee 

of Banking Supervision guidelines, which will be discussed in the following sections. Thereafter, 

a discussion on the different methods for quantifying credit exposure will be represented. 

2.6.1  Expected exposure 

The pricing of counterparty credit risk will involve 𝐸𝐸 that is defined as the average of all the 

possible exposure values considering the different scenarios depicted in Figure 2.3.  

Mathematically (Pykhtin and Zhu, 2007:17; Norman and Chen, 2013:37), 𝐸𝐸 at time 𝑡 can be 

calculated as  

 
𝐸𝐸𝑡 =

1

𝑁
∑ max(𝑉𝑡𝑖

, 0) ,

𝑁

𝑖=1

 (2.18) 

where 𝑁 is the number of generated scenarios and 𝑉𝑡𝑖
 is the fair value at time 𝑡 for scenario 𝑖. 

Note that only positive values give rise to exposure whereas negative values have zero 

contribution.  

 

Figure 2.3: Expected Exposure 

Source: Gregory, 2012:128 

2.6.2  Potential Future Exposure  

Potential future exposure (𝑃𝐹𝐸) is an extreme measure of exposure and can be defined as the 

exact same measure as Value-at-Risk (VaR), with the only differences being that 𝑃𝐹𝐸 is defined 

for more than one future date and represents gains instead of losses. VaR will not be discussed 

in this study, but the reader can see Alexander (2008) for further reading. With 𝑃𝐹𝐸 it is possible 

to calculate the worst exposure with reference to a confidence level, which is a natural question 

to ask in risk management. (Norman and Chen, 2013:31). A 𝑃𝐹𝐸 confidence level of 99% will 

define the exposure that would be exceeded with a probability of no more than 1%. 𝑃𝐹𝐸 is 
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illustrated in Figure 2.4 below. 𝑃𝐹𝐸 only represents the worst exposure values, while 𝐸𝐸 

represents the average of all values (Gregory, 2012:127). 

 

Figure 2.4: Potential Future Exposure 

Source: Gregory, 2012:127 

2.7 QUANTIFYING CREDIT EXPOSURE 

The practical calculation of exposure involves choosing a balance between sophistication and 

operational considerations (Gregory, 2012:157). In the first section, the MtM plus add-on 

method will be discussed followed by an in depth discussion on the Monte Carlo methodology.  

2.7.1  Mark-to-Market Plus Add-on (Current Exposure Method) 

The simplest approach to approximate future exposure is to take the current positive exposure 

and add a component that represents the uncertainty of the 𝑃𝐹𝐸 in the future. This approach is 

known as the current exposure method (CEM). At trade level, an add-on component should 

always account for the time horizon in question and the volatility of the underlying asset class 

(Gregory, 2012:157-158).  

CEM is the approach that was first introduced in the Basel Accords and is formally defined as 

equal to the replacement cost of the fair value contract currently in the money, plus the credit 

exposure risk of potential future volatility of the underlying asset. The CEM is used to calculate 

the exposure at default (𝐸𝐴𝐷), define as 

 𝐸𝐴𝐷 = max(𝑉0, 0) + 𝑁𝑜𝑡 ∙ 𝐶𝐶𝐹, (2.19) 

where 𝑉0 is the current MtM value, 𝑁𝑜𝑡 is the notional amount and 𝐶𝐶𝐹 is the Credit Conversion 

Factor (Douglas and Pugachevsky, 2012:3-4; Kotzé, 2012:4-5). These factors are fixed and are 

specified in Basel II given in Table 2.1 on the next page. 
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Table 2.1: Conversion Factor Matrix for OTC Derivative Contracts 

 

Source: The Federal Reserve Board, 2006 

Add-on approaches are computationally fast and allow exposures to be pre-calculated and 

represented in simple grids, allowing for a quick look-up of the 𝑃𝐹𝐸 of a new trade.  

Unfortunately, add-on approaches do not account for more subtle effects including: 

 Transaction specifics; 

 If the fair value of the transaction is far from zero; 

 Netting; 

 Collateral. 

The Basel Accords allow netting to be incorporated, but under strict rules. For example, only 

60% of the netting benefit can be used to offset the add-on (Gregory, 2012:158). There are 

more sophisticated add-on methodologies available, which the reader can find in publications by 

Rowe (1995) and Rowe and Mulholland (1999), although the increased complexity must be 

balanced against the Monte Carlo methodology, discussed in the next section.  

2.7.2  Monte Carlo Methodology 

Although the Monte Carlo methodology is the most complex and computationally intensive 

method to calculate exposure, it is completely generic and copes with the many complexities 

including transaction specifics, path dependency, netting and collateralisation, which the simple 

CEM struggles to capture. In the case of a high-dimensional netting set, it is the only method 

that can realistically incorporate a relatively large number of risk factors and their correlations 

(Gregory, 2012:159). In this section a general discussion of Monte Carlo simulation will be 

provided, supplemented by the methodology to simulate 𝐸𝐸 for an IRS.  

2.7.2.1 General Monte Carlo Simulation Framework 

Let 𝑋 be a given random variable with 𝐸(𝑋) = 𝜃, where the true value is unknown, and 

𝑉𝑎𝑟(𝑋) =  𝜎2. In Monte Carlo simulation, 𝑁 observations of 𝑋 i.e. {𝑋𝑖: 𝑖 = 1, … , 𝑁} is generated, 

given the distribution of 𝑋. The parameter 𝜃 is estimated by the sample mean of {𝑋1, … , 𝑋𝑁} , i.e. 

𝜃 =
1

𝑁
∑ 𝑋𝑖

𝑁
𝑖=1 . This implies that 𝜃 is an unbiased estimator for 𝜃 since  

Remaining 

Maturity 

(Years)

Interest 

Rate

Foreign 

Exchange 

rate and 

Gold

Credit 

(Investment-

grade 

obligor)

Credit (Non-

investment-

grade 

obligor)

Equity Precious 

Metals 

(except 

Gold)

Other 

Commodity

< 1 year 0.00% 1.00% 5.00% 10.00% 6.00% 7.00% 10.00%

1 - 5 years 0.50% 5.00% 5.00% 10.00% 8.00% 7.00% 12.00%

> 5 years 1.50% 7.50% 5.00% 10.00% 10.00% 8.00% 15.00%

Type
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𝐸(𝜃) = 𝐸 [
1

𝑁
∑ 𝑋𝑖

𝑁

𝑖=1

] 

=
1

𝑁
∑ 𝐸(𝑋𝑖)

𝑁

𝑖=1

, 𝑖 = 1, … , 𝑁 

= 𝐸(𝑋) 

= 𝜃, 

with 𝑉𝑎𝑟(𝜃) =
𝜎2

𝑁
. By the Law of Large Numbers given in Theorem 2.1, the estimate becomes 

more accurate as 𝑁, the number of simulations, increases (Van der Merwe, 2010:7; 

Glasserman, 2004:1-2; Rizzo, 2008:120).  

Theorem 2.1 (The Law of Large Numbers) Let 𝑋1, … , 𝑋𝑁 be independently identically 

distributed (i.i.d.) random variables with mean 𝜃 and variance 𝜎2. Then for any given 𝛿 > 0, 

𝑃(|𝜃 − 𝜃| > 𝛿 ) → 0 𝑎𝑠 𝑁 → ∞ (Rice, 2007:175). 

Therefore, the 𝐸𝐸 will increase in accuracy as the number of times the fair value of the IRS is 

estimated increases. The general Monte Carlo simulation method will be applied to the 

simulation of 𝐸𝐸 for an IRS in the following sections and will be expanded on in Chapter 3.   

2.7.2.2 Valuation of an Interest rate Swap 

To simulate the 𝐸𝐸 for a plain vanilla IRS, the IRS needs to be valued at certain points of time in 

the future. This section will discuss the methodology for plain vanilla IRS valuation as presented 

by Hull (2009:159-163), Lesniewsky (2008:6-8) and Ahlberg (2013:42). 

Let 𝑇1 < ⋯ < 𝑇𝑛𝑓𝑖𝑥𝑒𝑑
 denote the coupon dates of the swap and let 𝑇0 = 0. The present value 

(PV) of the interest payments on the fixed leg of a swap is calculated as the sum of all future 

cash flows 

 

𝑃𝑉𝑓𝑖𝑥𝑒𝑑 = ∑ 𝛼𝑖𝐶𝑓𝑖𝑥𝑒𝑑𝑃(0, 𝑇𝑖)

𝑛𝑓𝑖𝑥𝑒𝑑

𝑖=1

, (2.20) 

where 𝐶𝑓𝑖𝑥𝑒𝑑 is the fixed coupon rate, 𝑃(0, 𝑇𝑖) is price at time zero of a zero coupon bond 

yielding one unit of money at time 𝑇𝑖 representing the discount factor for the 𝑖th coupon date 

and 𝛼𝑖 is the day-count fraction applying to each period. This formula can be rewritten as 

 𝑃𝑉𝑓𝑖𝑥𝑒𝑑 = 𝐶𝑓𝑖𝑥𝑒𝑑𝐿, (2.21) 
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where 

 

𝐿 = ∑ 𝛼𝑖𝑃(0, 𝑇𝑖),

𝑛𝑓𝑖𝑥𝑒𝑑

𝑖=1

 (2.22) 

is called the 𝐷𝑉01 of the swap. For the floating leg, which will be tied to a rate such as JIBAR, it 

can be formulated as 

 

𝑃𝑉𝑓𝑙𝑜𝑎𝑡 = ∑ 𝛿𝑖𝐿𝑖𝑃(0, 𝑇𝑖)

𝑛𝑓𝑙𝑜𝑎𝑡

𝑖=1

, (2.23) 

where  

 𝐿𝑖 = 𝐹(𝑇𝑖−1, 𝑇𝑖) 

=
𝑅(0, 𝑇𝑖)𝑇𝑖 − 𝑅(0, 𝑇𝑖−1)𝑇𝑖−1

𝑇𝑖 − 𝑇𝑖−1
 

=
1

𝛿𝑖
(

1

𝑃(𝑇𝑖−1, 𝑇𝑖)
− 1), 

(2.24) 

is the forward rate for settlement at 𝑇𝑖−1, 𝑃(0, 𝑇𝑖) is the discount factor for the 𝑖th coupon date 

and 𝛿𝑖 is the day-count fraction applying to each period between 𝑇𝑖−1 and 𝑇𝑖. It is important to 

note that it is possible to write 

 𝑃𝑉𝑓𝑙𝑜𝑎𝑡 = 1 − 𝑃(0, 𝑇𝑀𝑎𝑡), (2.25) 

where 𝑇𝑀𝑎𝑡 denotes the maturity of the swap and expresses the fact that a spot settled floating 

rate bond, paying JIBAR and repaying the principal at maturity, is always valued at par. To 

prove Equation 2.22 is simple: 

𝑃𝑉𝑓𝑙𝑜𝑎𝑡 = ∑ 𝛿𝑖𝐿𝑖𝑃(0, 𝑇𝑖)

𝑛𝑓𝑙𝑜𝑎𝑡

𝑖=1

 

= ∑ (
1

𝑃(𝑇𝑖−1, 𝑇𝑖)
− 1) 𝑃(0, 𝑇𝑖)

𝑛𝑓𝑙𝑜𝑎𝑡

𝑖=1

 

= ∑ [𝑃(0, 𝑇𝑖−1) − 𝑃(0, 𝑇𝑖)]

𝑛𝑓𝑙𝑜𝑎𝑡

𝑖=1

 

= 1 − 𝑃(0, 𝑇𝑛𝑓𝑙𝑜𝑎𝑡
) 
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The PV of a payer swap is the difference between 𝑃𝑉𝑓𝑖𝑥𝑒𝑑 and 𝑃𝑉𝑓𝑙𝑜𝑎𝑡 (in this order): 

 𝑃𝑉𝑠𝑤𝑎𝑝 = 𝑃𝑉𝑓𝑖𝑥𝑒𝑑 − 𝑃𝑉𝑓𝑙𝑜𝑎𝑡 , (2.26) 

implying the PV of a receiver swap is a matter of changing the sign. At inception the IRS will be 

priced to ensure the PV is zero. In the derivation it was assumed that no spread would be added 

to the floating leg of the IRS. If a spread is to be added, a simple modification can be made, 

which is discussed in section 3.5.2.1. 

2.7.2.3 The Interest Rate Model 

To estimate the value of the IRS to calculate the 𝐸𝐸, the term structure of the interest rate will 

need to be estimated. According to Svoboda (2002:208), the choice of model in the South 

African market is largely driven by availability and reliability of market data. The South African 

interest rate market is thin, which makes implementing sophisticated models such as the Libor 

Market Model and the Heath, Jarrow and Morton Model difficult and the results questionable.  

Therefore, the stochastic interest rate model chosen to model the term structure is the Vasicek 

(One Factor) model proposed by Vasicek (1977), which will only be referred to as the Vasicek 

model hereafter.  Hull and White (1990) explored extensions of the model that provides an exact 

fit to the initial term structure, which is not necessary for the purposes of this paper and 

therefore the Vasicek model will be an adequate choice. The Vasicek model also has the 

characteristic of mean reversion and it is possible to find analytical formulas for bond and option 

prices. Although, difficulties arise in low interest rate countries, since a draw back of the Vasicek 

model is negative rates, it will not be a factor in the South African context.  Before the Vasicek 

model is to be described in detail, background on one-factor short rate models will be given. 

The short rate at time 𝑡, 𝑟(𝑡), is the rate that applies to the infinitesimally short period of time at 

time 𝑡 and is also referred to as the instantaneous short rate. In a traditional risk-neutral world 

considered here, in a very short period of time between 𝑡 and 𝑡 +  𝛿𝑡, investors earn on average 

𝑟(𝑡)𝛿𝑡 (Hull, 2009:673). 

From the equivalent martingale measure result defined in Appendix A, it follows that in a risk-

neutral world the value at time 𝑡 of an interest rate derivative that provides a payoff of 𝑓𝑇 at time 

𝑇 is 

 𝑓𝑡 = 𝐸ℚ(𝑒−𝑟(𝑇−𝑡) ∙ 𝑓𝑇), (2.27) 

where 𝑟 is the average value of 𝑟 over the interval between 𝑡 and 𝑇, 𝐸ℚ denotes the expected 

value in the traditional risk-neutral world. Hence, 
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 𝑃(𝑡, 𝑇) = 𝐸ℚ(𝑒−𝑟(𝑇−𝑡) ∙ 1), (2.28) 

where 𝑃(𝑡, 𝑇) is the price, at time 𝑡 of a zero coupon bond of unit face value maturing at time 𝑇, 

where 𝑡 ≤ 𝑇 and 𝑃(𝑇, 𝑇) = 1. 

If 𝑅(𝑡, 𝑇) is the continuously compounded interest rate at time 𝑡 for a period of 𝑇 − 𝑡, which is 

defined in Chapter 2.2, then 

 𝑃(𝑡, 𝑇) = 1 ∙ 𝑒−𝑅(𝑡,𝑇)(𝑇−𝑡), (2.29) 

so that 

 
𝑅(𝑡, 𝑇) = −

1

𝑇 − 𝑡
ln 𝑃(𝑡, 𝑇) 

= −
1

𝑇 − 𝑡
ln 𝐸ℚ(𝑒−𝑟(𝑇−𝑡) ∙ 1), 

(2.30) 

from Equation 2.28. 

(Park, 2004:3; Hull, 2009:674) 

This equation enables the term structure of interest rates at any given time to be obtained from 

the value of 𝑟 at that time and the risk-neutral process of 𝑟. Once the process for 𝑟 is defined, 

the initial zero curve and its evolution through time is completely known (Hull, 2009:674). With 

this information as background it is now possible to define the Vasicek model. 

2.7.2.4 The Vasicek One-Factor Model 

As previously mentioned, the Vasicek model was first introduced by Vasicek in 1977 and was 

the first continuous time interest rate model to gain wide spread acceptance. In the specific one-

factor Vasicek model, the underlying stochastic process for the short rate 𝑟(𝑡) is given by  

 𝑑𝑟(𝑡) = 𝑎[𝑏 − 𝑟(𝑡)]𝑑𝑡 + 𝜎𝑑𝑊(𝑡), (2.31) 

where  

 𝑊(𝑡) represents a standard Brownian motion; 

 𝑎 > 0, is a constant representing the rate of mean reversion; 

 𝜎 is a constant representing the standard deviation; 

 𝑏 is a constant rate to which the short rate is pulled at rate 𝑎. 

According to Svoboda (2002:2), Vasicek makes three key assumptions. The first assumption is 

that the current spot interest rate is known with certainty. However, the subsequent values of 

the spot rate are not known. Also assume that the short rate 𝑟(𝑡) follows a Markov process. 

That is, given the current value, future developments of the spot rate are independent of past 
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movements. The second assumption is that the value of the zero coupon bond, 𝑃(𝑡, 𝑇), is fully 

determined by the time 𝑡 assessment of {𝑟(𝑡∗): 𝑡 < 𝑡∗ < 𝑇}, the segment of the spot rate over the 

remaining term of the bond. Moreover, the development of the spot rate is fully determined by 

the current value of 𝑟(𝑡). The third assumption is that the market is efficient. This implies that 

there are no transaction costs, investors receive all information simultaneously, all investors are 

rational and that a riskless arbitrage profit is not possible.  

Svoboda (2002: 5-6) goes further and shows that from Equation 2.29, zero coupon bond prices 

at time 𝑡 of unit face value in the Vasicek model are given by 

 𝑃(𝑡, 𝑇) = 𝑒−𝑅(𝑡,𝑇)(𝑇−𝑡) 

= 𝐴(𝑡, 𝑇)𝑒−𝐵(𝑡,𝑇)𝑟(𝑡), (2.32) 

with   

 
𝐵(𝑡, 𝑇) =

1 − 𝑒−𝑎(𝑇−𝑡)

𝑎
 

(2.33) 

and 

 

𝐴(𝑡, 𝑇) =  exp [
(𝐵(𝑡, 𝑇) − 𝑇 + 𝑡)(𝑎2𝑏 −

𝜎2

2 )

𝑎2
−

𝜎2𝐵(𝑡, 𝑇)2

4𝑎
] 

(2.34) 

Alternatively, the spot rate can be calculated from equation 2.30 as follows, 

 
𝑅(𝑡, 𝑇) =  −

1

𝑇 − 𝑡
ln 𝐴(𝑡, 𝑇) +

1

𝑇 − 𝑡
𝐵(𝑡, 𝑇)𝑟(𝑡) 

(2.35) 

(Hull, 2009:676; Svoboda, 2002:6; Vasicek, 1977:181). 

2.7.2.5 A Note On Model Calibration 

To use the Vasicek model in the pricing of derivatives it needs to be calibrated to represent the 

characteristics of the term structure in the market.  There are three parameters in the Vasicek 

model that determine the evolution of the short rate. 

The model parameter 𝑏 is chosen as the long-term rate to which the short rate is pulled at a rate 

of 𝑎. The mean reversion rate 𝑎 and volatility 𝜎 are calibrated to the prices of interest rate 

derivatives such as options, caps and floors or swaptions by means of optimisation. A popular 

goodness-of-fit measure is  

 
∑(𝑈𝑖 − 𝑉𝑖)2

𝑛

𝑖=1

, 
(2.36) 
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where 𝑈𝑖 is the market price of the 𝑖th calibrating instrument and 𝑉𝑖 is the price given by the 

model for this instrument (Hull, 2009:696-697). The parameters are then chosen to minimise the 

goodness-of-fit measure. 

In the absence of liquid calibrating instruments, the usual route is to rely on historical interest 

rate data, either explicitly or implicitly. These usually take the form of spot rate time series of 

different maturities (Ahlberg, 2013:45). There are numerous other methods to calibrate the 

Vasicek model, but the focus of this paper is not on model calibration and the reader is 

referenced to Park (2004) and Svoboda (2002) for further reading.  

2.8 MITIGATING COUNTERPARTY CREDIT RISK 

There are various means to reduce CCR. Netting and collateral have been common methods to 

achieve this. These methods are of a bilateral nature and therefore aim to reduce the risk for 

both parties. In the event of a default, netting allows the offset of exposure amounts owed to 

and by the counterparty. Netting is finite and greatly dependent on the type of underlying 

transactions involved.  

In theory, collateral can reduce the CCR even further to the point of elimination but it creates 

significant operational costs and other risks, such as liquidity risk and legal risk. Netting will be 

discussed in greater detail in the next section, followed by a discussion on collateral 

summarised from Gregory (2012). 

2.8.1 Netting  

When a counterparty defaults, the market needs a mechanism whereby participants can replace 

their positions with other counterparties. Furthermore, it is desirable for an institution to be able 

to offset what it owes to the defaulted counterparty against what they themselves are owed from 

the counterparty. There are two mechanisms to facilitate this, payment netting and closeout 

netting. Payment netting gives the institution the ability to net cash flows occurring on the same 

day, whilst closeout netting allows for the termination of all transaction values, both in favour 

and against (Gregory, 2012:46-47). This typically relates to CCR.  

2.8.1.1 Netting sets 

The concept of a netting set corresponds to a set of trades that can be legally netted together in 

the event of a default. A netting set can be a single trade and there may be more than one 

netting set per counterparty. Exposure will always be additive across netting sets. It is important 

to point out that within the netting set, quantities such as 𝐸𝐸 and CVA are non-additive 

(Gregory, 2012:49-50).  
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2.8.1.2 The Impact of Netting on Exposure 

Since netting allows the future values of trades to offset one another, then the aggregate effect 

of all trades needs to be considered (Gregory, 2012:139). The impact of netting on future 

exposure can be illustrated in Figure 2.5 with two transactions, PV 1 and PV 2. PV 1 goes from 

positive to negative, whilst PV 2 is only positive. With no netting agreement, exposures are 

additive, since the positions do not offset one another. If netting is allowed, the values can be 

added at the netting set level before calculating the exposure and therefore shows less 

exposure at the points in the future.  

 

Figure 2.5: The Impact of Netting on Exposure 

Source: Ahlberg, 2013:13  

2.8.2 Collateral 

Collateralisation can reduce credit exposure even further. Collateral agreements may often be 

negotiated prior to any trading activity between counterparties or may be agreed or updated 

prior to any increase in trading volume or other agreements (Gregory, 2012:59).  

2.8.2.1 The Basics of Collateralisation  

The idea of collateralisation is simple and is illustrated in Figure 2.6. Consider a transaction 

between two parties A and B. Party A makes a MtM profit whilst party B makes a corresponding 

MtM loss. Party B then posts some form of collateral to party A to mitigate the credit exposure 

that arises due to the positive MtM. The collateral may be cash or other securities that will be 

specified before the initiation of the contract. Since collateral agreements are often bilateral, 

collateral must be returned or posted in the opposite direction when exposure decreases 

(Gregory, 2012:61). 
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Figure 2.6: Illustration of the basic principle of collateralisation 

Source: Gregory, 2012:61 

2.8.2.2 The Impact of Collateral on Exposure 

The impact of collateral on a typical exposure profile is shown in Figure 2.7. There are two 

reasons why collateral cannot mitigate exposure perfectly. Firstly, the presence of a threshold 

ensures that a certain amount of exposure cannot be collateralised. Secondly, the delay in 

receiving collateral and constraints such as a minimum transfer amount create a discrete effect 

illustrated by the grey bars in Figure 2.7 (Gregory, 2012:64).  

 

Figure 2.7: The impact of collateralisation on exposure 

Source: Gregory, 2012:64 
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2.9 SUMMARY 

A formula to estimate CVA was derived in the first section, followed by detailed discussions on 

each component of CVA such as 𝑃𝐷, 𝐿𝐺𝐷 and 𝐸𝐸. Thereafter, two methods to mitigate CCR, 

netting and collateralisation were discussed. 

In the following chapters the literature discussed in this chapter will be applied to the calculation 

of the 𝐸𝐸 of the IRS. In Chapter 3 the research methodology will be described, whilst Chapter 4 

will represent the results of the study. Chapter 5 will offer a conclusion and open questions for 

further research.    
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 INTRODUCTION 

This chapter will represent the methodology used to calculate credit valuation adjustment (CVA) 

for a plain vanilla interest rate swap (IRS). The focus will be on the calculation of the expected 

exposure (𝐸𝐸) element, whilst other less important (to this study) elements such as the 

probability of default (𝑃𝐷) and loss given default (𝐿𝐺𝐷) will be discussed in lesser detail. These 

methodologies will then be used to find the results represented in Chapter 4. 

3.2 CREDIT VALUATION ADJUSTMENT 

Although the quantification of 𝐸𝐸 is the focus of this paper, the CVA will also be presented as a 

result in Chapter 4. CVA was discussed in section 2.3. The formula used to calculate CVA is 

 
𝐶𝑉𝐴(𝑡, 𝑇) = (1 − Θ) [∫ 𝐸𝐸(𝑢, 𝑇)𝐵(𝑡, 𝑢)𝑑𝐹(𝑡, 𝑢)

𝑇

𝑡

] 

≈ (𝐿𝐺𝐷) ∑ 𝐷𝐹𝑡𝑖
𝐸𝐸𝑡𝑖

𝑃𝐷(𝑡𝑖−1, 𝑡𝑖)

𝑁

𝑖=1

, 

(3.1) 

where (1 − Θ) = 𝐿𝐺𝐷, 𝐷𝐹 is the relevant risk-free discount factor, 𝐸𝐸 is the non-discounted 

expected exposure on the relevant dates and 𝑃𝐷 is the probability of default between relevant 

dates. According to Gregory (2012:245), the accuracy of the estimation of 𝐸𝐸 can be improved 

by transforming 

𝐸𝐸𝑡𝑖
≈

(𝐸𝐸𝑡𝑖−1
+ 𝐸𝐸𝑡𝑖

)

2
 

and 

𝐷𝐹𝑡𝑖
≈

(𝐷𝐹𝑡𝑖−1
+ 𝐷𝐹𝑡𝑖

)

2
 

This variance reduction technique is referred to as Stratified Sampling and more on variance 

reduction techniques can be found in Glasserman (2004) and Rizzo (2008). The discount factor 

for the calculation of CVA in this study will be derived from a constant annual term structure of 

5.50%. This is a simplifying assumption to assist with the comparison between CVA calculation 

methodologies and the reader should note that in practise the current term structure should be 

used. 
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3.3 PROBABILITY OF DEFAULT 

The 𝑃𝐷 will be assumed as constant over time in this study. The Financial Services Board of 

South Africa (FSB) concluded in the third South African Quantitative Impact Study (SA QIS3) 

that if the 𝑃𝐷 in the following year, 𝑃𝐷1, is known and is assumed to be constant over time that 

the probability of default in year 𝑡 can be estimated by 

 𝑃𝐷𝑡 = 𝑃𝐷1(1 − 𝑃𝐷1)𝑡−1 (3.2) 

In this paper a probability of default of 1% per quarter will be assumed.   

3.4 RECOVERY RATES AND LOSS GIVEN DEFAULT 

Since the focus of this paper is not on estimating the loss given default fraction, it is assumed 

that the 𝐿𝐺𝐷 will be constant over the time periods. The Financial Services Board of South 

Africa (FSB) concluded in the third South African Quantitative Impact Study (SA QIS3) that an 

average 𝐿𝐺𝐷 of 60% is sufficient.  Therefore, the constant 𝐿𝐺𝐷 used in this study will be 60%.  

3.5 QUANTIFYING CREDIT EXPOSURE 

In the following sections the methodology for quantifying exposure with the current exposure 

method (CEM) and the Monte Carlo Method, discussed in section 2.7 will be described. All 

calculations are done assuming a notional (𝑁𝑜𝑡) of one. The exposure calculations will then be 

used to calculate CVA as described in sections 2.3 and 3.2. 

3.5.1 Mark-to-Market Plus Add-on (Current Exposure Method) 

To calculate the exposure with the CEM, the current value,𝑉0, of the IRS will be calculated with 

the swap curve and used in the following formula corresponding to Equation 2.19 

 𝐸𝐴𝐷 = max(𝑉0, 0) + 𝑁𝑜𝑡 ∙ 𝐶𝐶𝐹 (3.3) 

This formula gives the exposure at default (𝐸𝐴𝐷). The credit conversion factor (CCF) will be 

assumed as given by Basel II in Table 3.1: 

Table 3.1: Conversion Factors for Interest Rate Derivatives 

 

Source: The Federal Reserve Board, 2006 

Type

Remaining 

Maturity 

(Years)

Interest 

Rate

< 1 year 0.00%

1 - 5 years 0.50%

> 5 years 1.50%
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There are two methods by which the CEM can be expanded when calculating the CVA. 

Therefore, call the method described above Method 1 and the expanded methods, Method 2 

and Method 3. With Method 2, the 𝐸𝐴𝐷 is calculated in the same manner as in Method 1, 

except that the number of time steps in the calculation is now only one. The formula for CVA is 

then 

 𝐶𝑉𝐴 = 𝐸𝐴𝐷 ∙ (1 − (1 − 𝑃𝐷)𝐷) ∙ 𝐿𝐺𝐷, (3.4) 

where 𝐷 is the estimated duration. The estimated duration is calculated as 50% of the time to 

maturity.  

In Method 3 𝐸𝐴𝐷 at time 𝑡 = 0 is also calculated in the same manner as the normal CEM. The 

EAD is then used to estimate an EE profile by decreasing the EAD linearly to zero for the 

remainder of the IRS tenor. The CVA is then calculated with the same formula derived in 

Chapter 2.  

These expansions to the CEM were created in an effort to increase the accuracy of the CEM 

approach. CVA will be calculated with all three methods and then compared to the Monte Carlo 

method. 

3.5.2 Monte Carlo Methodology 

In the following subsections the methodology for simulating 𝐸𝐸 with the means of Monte Carlo 

simulation will be discussed.  

3.5.2.1 Valuation of an Interest Rate Swap 

The theory of the valuation of an IRS was discussed in section 2.7.2.2. Once the parameters of 

the IRS, namely the swap rate, maturity, payment frequency, the notional amount and the 

floating rates are known, the price of the IRS at 𝑡 = 0 can be calculated. The exposure of the 

IRS at the future coupon dates can then be estimated. The floating rates are derived from the 

interest rate curve implemented as explained in the next section. The following equation will be 

used to value the fixed leg of the IRS 

 

𝑃𝑉𝑓𝑖𝑥𝑒𝑑 = ∑ 𝛼𝑖𝐶𝑓𝑖𝑥𝑒𝑑𝑃(0, 𝑇𝑖)

𝑛𝑓𝑖𝑥𝑒𝑑

𝑖=1

 (3.5) 

This corresponds to equation 2.20. To value the floating leg of the IRS the following equation 

will be used 

 

𝑃𝑉𝑓𝑙𝑜𝑎𝑡 = ∑ 𝛿𝑖𝐿𝑖𝑃(0, 𝑇𝑖)

𝑛𝑓𝑙𝑜𝑎𝑡

𝑖=1

, (3.6) 
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where 

𝐿𝑖 = 𝐹(𝑇𝑖−1, 𝑇𝑖), 

is the forward rate for settlement at 𝑇𝑖−1. According to Hull (2009:83) the forward rates can be 

calculated from the zero rates as 

 
𝐹(𝑇𝑖−1, 𝑇𝑖) =

𝑅(0, 𝑇𝑖)𝑇𝑖 − 𝑅(0, 𝑇𝑖−1)𝑇𝑖−1

𝑇𝑖 − 𝑇𝑖−1
 

= 𝑅(0, 𝑇𝑖) + [𝑅(0, 𝑇𝑖) − 𝑅(0, 𝑇𝑖−1)]
𝑇𝑖−1

𝑇𝑖 − 𝑇𝑖−1
, 

(3.7) 

which is more relevant than using the discount factor since it allows for the inclusion of a spread 

to the floating rate. In this study it will be assumed that the day count fractions 𝛼𝑖 and 𝛿𝑖 are 

equal and no provision is made for a specific day count convention.  

3.5.2.2 The Interest Rate Model 

To model the 𝐸𝐸 if an IRS, the interest rate will need to be simulated to calculate the floating 

rate coupons, described in the previous section. The algorithm to simulate the Vasicek One-

Factor model will be discussed below. 

Let 𝑟(𝑡) be the short rate described in section 2.7.2.3. Then the Vasicek model describes 𝑟(𝑡) 

by the following equation corresponding to equation 2.31  

 𝑑𝑟 = 𝑎[𝑏 − 𝑟]𝑑𝑡 + 𝜎𝑑𝑊 (3.8) 

Equation 3.8 can be discretised and written as 

 𝛿𝑟 = 𝑟(𝑡 + 𝛿𝑡) − 𝑟(𝑡) = 𝑎(𝑏 − 𝑟(𝑡))𝛿𝑡 + 𝜎𝑍√𝛿𝑡, (3.9) 

 so that  

 𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡) + 𝑎(𝑏 − 𝑟(𝑡))𝛿𝑡 +  𝜎𝑍√𝛿𝑡, (3.10) 

where 𝑍~Ν(0,1), 𝑎, 𝑏 and 𝜎 are the model parameters described in section 2.7.2.4. 

If the model parameters 𝑎, 𝑏 and 𝜎 are known, as well as the current spot rate 𝑅(0, 𝑇), the 

following algorithm can be used to generate 𝑟(𝑡) for = 0, 𝛿𝑡, 2𝛿𝑡, 3𝛿𝑡, … . 

Algorithm 3.1 (Steps to simulate the Vasicek short rate)  

1. From equation 3.10, 

 𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡) + 𝑎(𝑏 − 𝑟(𝑡)))𝛿𝑡 +  𝜎𝑍√𝛿𝑡 (3.11) 

2. Let 𝑟(0) = 𝑅(0). 
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3. Generate a standard normal random variable 𝑍1. By equation 3.11 

 𝑟(𝛿𝑡) = 𝑟(0 + 𝛿𝑡) = 𝑟(0) + 𝑎(𝑏 − 𝑟(0))𝛿𝑡 + 𝜎𝑍1√𝛿𝑡  

4. Repeat steps 1 to 3 to generate 𝑟(𝑡) for 𝑡 = 0, 𝛿𝑡, 2𝛿𝑡, 3𝛿𝑡, … 

Now that the short rates are generated, the zero curve can be calculated from equation 2.35. In 

this paper the model parameters 𝑎, 𝑏 and 𝜎 will not be calibrated, but rather chosen to 

approximately fit the shape of the swap curve prevailing in the South African market. The 

choices were 𝑎 = 0.6, 𝑏 = 0.07 and 𝜎 = 0.11 with 𝑟(0) = 5.1% corresponding to the three month 

JIBAR rate on 26 September 2014. The term structure is represented in Figure 3.1 below. This 

algorithm was implemented in the R statistical computer software program (R Development 

Core Team, 2014).  

 

Figure 3.1: The initial Vasicek term structure, 𝑹(𝟎, 𝑻), for 𝑻 = 𝟎, 𝟎. 𝟐𝟓, 𝟎. 𝟓, … , 𝟐𝟓 years. The 

parameters are 𝒂 = 𝟎. 𝟔, 𝒃 = 𝟎. 𝟎𝟕 and 𝝈 = 𝟎. 𝟏𝟏 with 𝒓(𝟎) = 5.1%. 

3.5.2.3 Exposure 

The methodology concerning the valuation and estimation of IRS exposure was discussed and 

now the following equation 

 
𝐸𝐸𝑡𝑖

=
1

𝑁
∑ max (𝑉𝑡𝑖

, 0)

𝑁

𝑖=1

, (3.12) 

corresponding to equation 2.18 will be used to estimate 𝐸𝐸.  As an addition, potential future 

exposure (𝑃𝐹𝐸) will also be illustrated parallel to 𝐸𝐸. 
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3.7 COMPARISON METHODOLOGY 

Since it will be very difficult to estimate the accuracy of the CEM methods with a statistical 

quantity, it will be assumed that the Monte Carlo method is 100% accurate. The exposure 

profiles of the CEM methods will then be compared to the Monte Carlo method 𝐸𝐸 value in 

absolute terms. Thereafter, the CVA will be calculated with each method and then compared to 

the Monte Carlo method CVA. 

3.8 SUMMARY 

This chapter discussed the methodology to implement the theory discussed in Chapter 2. The 

method to calculate each component of CVA such as 𝑃𝐷, 𝐿𝐺𝐷 and 𝐸𝐸 was discussed followed 

by the method used to compare the CEM with the Monte Carlo method. In the following chapter 

the results will be represented and discussed. 
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CHAPTER 4 

RESULTS 

4.1 INTRODUCTION 

In this chapter the results will be represented and discussed. The results were obtained by 

using the methodology described in Chapter 3. In the following sections the details of the 

various interest rate swaps (IRS) used to obtain the results will be given, followed by the 

expected exposure calculations with the Current Exposure Method (CEM) methods and the 

Monte Carlo methodology. Finally, the exposure profiles will be used to calculate the credit 

valuation adjustment (CVA) to compare the adjusted fair values of the two methods.  

4.2 INTEREST RATE SWAP DETAILS 

There were nine different IRS’s used to obtain the results for this study. The details of these 

IRS’s are given in Table 4.1. For simplicity, it is assumed that all the IRS’s are floating payer 

swaps and that the payment frequency is quarterly throughout.  

Table 4.1: Details of the IRS’s used in the study 

 

It was assumed that the notional principal of each swap is one. To calculate the current fair 

value of the swaps, the initial term structure given in section 3.5.2.2 was used. These values are 

given in the last column of Table 4.1. It is evident that the various swap rates and the tenor of 

each swap greatly effects the current value of the IRS. If the swap rate increases from 4.00% to 

8.00% for 10-Year swaps, the current value increases from -11.26% of the notional to 19.34% of 

the notional amount, respectively. If the swap rate is increased futher to 12.00% the current 

value increases to 50.16% of the notional amount. Further, if the tenor of the IRS with a 8.00% 

swap rate is increased the current value becomes 4.69% for a 2-Year tenor, 19.34% for a 10-

Year swap and 35.33% for a 25-Year swap.   

 

Swap Swap Rate Tenor (Years) Spread Current Fair Value

1 2 0 -0.02951

2 10 0 -0.11259

3 25 0 -0.19224

4 2 0 0.04691

5 10 0 0.19338

6 25 0 0.35329

7 2 0 0.12223

8 10 0 0.50156

9 25 0 0.89882

0.04

0.08

0.12
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4.3 EXPECTED EXPOSURE 

The theory regarding the quantification of exposure was discussed in Chapter 2.7. Before the 

exposure profiles for the various methods will be compared, the expected exposure (𝐸𝐸) and 

potential future exposure (𝑃𝐹𝐸) estimated by the Monte Carlo method for each IRS is 

represented and discussed in Figure 4.2, Figure 4.3 and Figure 4.4 below.  The tables 

representing the values of the 𝐸𝐸 are given in Appendix B. 

The Vasicek model was used to simulate 10 000 interest rate paths for each swap to estimate 

the 𝐸𝐸. The model parameters that was used are 𝑎 = 0.6, 𝑏 = 0.07 and 𝜎 = 0.11 with 𝑟(0) = 

5.1% corresponding to the three month JIBAR rate on 26 September 2014. This was 

accomplished by simulating the short rate for each day of the year, assuming 252 trading days 

in a year and then calculating the term structure to maturity on each payment date in the future. 

The value of the swap was then calculated on each payment date using the simulated term 

structures. These values are illustrated in Figure 4.1 using swap number 2 in Table 4.1.  

 

Figure 4.1: Simulated future values for an Interest rate swap with Swap Rate = 4% and 

Tenor = 10 years 

Each of the lines in Figure 4.1 represents one simulation of the value of the swap on each 

quarterly payment date in the future from 𝑡 = 0 to 𝑡 = 10. Such a simulation was done for each 

swap in the Table 4.1 and these values were then used to calculate the 𝐸𝐸 and 𝑃𝐹𝐸.  
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Figure 4.2: Graphical representation of Expected Exposure and Potential Future 

Exposure for 2-year swaps 

Figure 4.2 illustrates the 𝐸𝐸 and 𝑃𝐹𝐸 for 2-Year IRS’s. The usual shape of the 𝐸𝐸 curve is only 

evident in the 4.00% swap, where the 𝐸𝐸 increases to a maximum at approximately a third of 

the tenor and thereafter decreases to zero, since the current values of the 8.00% and 12.00% 

swaps were too far from zero. Therefore, it seems that the 𝐸𝐸 for the 8.00% and 12.00% is 

decreasing from 𝑡 = 0 to 𝑡 = 2. The 95% 𝑃𝐹𝐸 for each swap in Figure 4.2 has the desired 

shape, although the starting values for the 8.00% and 12.00% swaps are high above zero. For 

the 8.00% IRS, the 𝑃𝐹𝐸 can be interpreted that, with 95% certainty, the entity will not lose more 

than 14.55% of the notional amount if the counterparty defaults between now and maturity. Note 

that the 𝐸𝐸 and 𝑃𝐹𝐸 of the 4.00% IRS does not originate from the same point, since the current 

value of the IRS is negative. By definition, 𝐸𝐸 cannot be negative, whilst 𝑃𝐹𝐸 can be.  

These characteristics are also evident in Figure 4.3 and in Figure 4.4, where the tenor for each 

IRS is 10 years and 25 years respectively. It can be seen that the 𝐸𝐸 and the 𝑃𝐹𝐸 increases as 

the swap rate and the tenor of each swap increases.  
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Figure 4.3: Graphical representation of Expected Exposure and Potential Future 

Exposure for 10-year swaps 

 

Figure 4.4: Graphical representation of Expected Exposure and Potential Future 

Exposure for 25-year swaps 

It is now possible to compare the Monte Carlo method to the three methods under CEM. The 

values are tabulated in Appendix B. Figure 4.5, Figure 4.6 and Figure 4.7 represents the 

exposure profiles for the Monte Carlo method compared to the CEM profiles for the 10-Year IRS 

for each swap rate. The figures for the 2-Year and 25-Year IRS are represented in Appendix B.   

The exposure for CEM Method 2 will not be presented in the figures since it is only one time 

step. 
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Figure 4.5: Exposure Profiles for the 4% 10-Year IRS for different methods 

 

Figure 4.6: Exposure Profiles for the 8% 10-Year IRS for different methods 
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Figure 4.7: Exposure Profiles for the 12% 10-Year IRS for different methods 

It can be seen in Figure 4.5 that the there are relatively large differences between the Monte 

Carlo method, Method 1 and Method 3 for the 4.00% IRS. The 8.00% IRS exposure profiles for 

the Monte Carlo method and Method 3 is much closer, shown in Figure 4.6, whilst the exposure 

profile for Method 1 is clearly deviating from the Monte Carlo method. This trend can be seen 

further in Figure 4.7 with the 12% IRS. Method 3 and the Monte Carlo Method are almost 

identical, whilst Method 1 deviates from the Monte Carlo method. 

Therefore, the higher the current value of the IRS is, the better Method 3 compares to the Monte 

Carlo method. Similar trends are evident for the 2-Year IRS and the 25-Year IRS. The figures 

are represented in Appendix B. One can now ask whether the Monte Carlo method for 

estimating 𝐸𝐸 for smaller non-financial organisations is necessary, considering the similarities 

with Method 3. The question can be answered by calculating the CVA. 
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4.4 CREDIT VALUATION ADJUSTMENT 

The exposure profiles represented in the previous sections will now be used to calculate the 

CVA. Table 4.2 represents the CVA calculated with the exposure estimated with the CEM 

Method 1, Method 2 and Method 3, as well as the CVA calculated with the Monte Carlo Method.  

Table 4.2: Credit Valuation Adjustments  

 

It can be seen in Table 4.2 that the value of CVA for all methods are increasing, as the tenor of 

the swaps increase, for each swap rate. If it can be assumed, as it will be in this study, that the 

Monte Carlo method is 100% accurate, it is evident that Method 1 relatively over estimates 

CVA. A 10-Year IRS with a swap rate of 8.00% has a CVA of 3.78% of the notional value when 

Method 1 is used. The same IRS has a CVA of 2.15% when the Monte Carlo method is used. 

This pattern is evident for all the various swap rates and tenors. Method 2 fairs relatively better 

compared to Method 1.  

Method 3 is clearly the best CEM method. A 10-Year IRS with a swap rate of 8.00% has a CVA 

of 2.01% of the notional value, whilst the same IRS has a CVA of 2.15% when the Monte Carlo 

method is used. This pattern is not so clear when the current value of the swap is close to zero 

or negative. This can be seen when comparing CVA for the 4% IRS. For the 10-Year 4% IRS 

the CVA calculated with Method 3 is 0.013%, whilst the CVA calculated with the Monte Carlo 

method for the same IRS is 0.052%. The reader should keep in mind that although the 

difference seems small, the notional amount could be very large, causing a small difference in 

percentage to be a large difference in monetary terms.  

 

 

Swap Rate Tenor in 

Years

Current Fair 

Value

Monte Carlo CEM: 

Method 1

CEM: 

Method 2

CEM: 

Method 3

2 -0.02951 0.00052 0.00025 0.00012 0.00013

10 -0.11259 0.00359 0.00278 0.00164 0.00153

25 -0.19224 0.00305 0.00450 0.00355 0.00285

2 0.04691 0.00146 0.00264 0.00123 0.00135

10 0.19338 0.02145 0.03779 0.02277 0.02099

25 0.35329 0.07279 0.11061 0.08728 0.06987

2 0.12223 0.00291 0.00646 0.00301 0.00331

10 0.50156 0.05048 0.09368 0.05644 0.05203

25 0.89882 0.18650 0.27444 0.21657 0.17336

0.08

0.12

Credit Valuation Adjustment

0.04
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4.5 CONCLUSION 

Therefore, making a simple modification to the CEM such as Method 3, it is possible to improve 

the accuracy of the add-on methodology to the point where it is close to the Monte Carlo 

method. Although the Monte Carlo method is still more accurate, it should be mentioned that it 

could be computationally time consuming. The longer the tenor, the longer it will take to 

estimate the 𝐸𝐸. Taking all the simplifying assumptions in this study into account, the time to 

estimate the 𝐸𝐸 takes relatively long when compared to the CEM.  An important note is that the 

R code used to estimate the 𝐸𝐸 was not necessarily written in the most efficient manner and 

can be greatly improved. More efficient code will improve the computational time drastically.  
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CHAPTER 5 

CONCLUSION AND OPEN QUESTIONS 

There are various methods to estimate expected exposure (𝐸𝐸) to calculate Credit Valuation 

Adjustment (CVA). CVA is essentially an adjustment to the measurement of derivative assets to 

reflect the default risk of the counterparty. The author compared the Current Exposure Method 

(CEM), and expansions thereof, with the Monte Carlo Method to estimate the 𝐸𝐸 for an interest 

rate swap (IRS).  

In Chapter 2 a literature review was done on the two methods to calculate the EE, as well as a 

discussion on the other elements needed to calculate CVA such as probability of default (𝑃𝐷) 

and loss given default (𝐿𝐺𝐷). For the Monte Carlo method it was necessary to explore interest 

rate models and how to simulate the short rate. Further, the theory on IRS pricing and valuation 

was also discussed. Ways to mitigate credit exposure were also briefly touched upon. The 

methodology used to implement the theory was then described in Chapter 3. 

The results for estimating 𝐸𝐸 with the CEM methods and the Monte Carlo method are 

represented in Chapter 4. The CEM methods are computationally much simpler than the Monte 

Carlo method and this is evident in the time the estimation of 𝐸𝐸 for each method took. CEM 

methods can be almost instant, whilst the Monte Carlo method can take anywhere from a few 

seconds to a few hours. What should be noted again is that the statistical programming code 

used in this study was written completely by the author and can be regarded as inefficient 

programming. Therefore, the computational time of the Monte Carlo method can be improved 

greatly. That being said, the efficiency of the code had no impact on the accuracy of the results. 

The code was written in the statistical programming package R and is represented in Appendix 

C. 

Although the initial research objective was achieved, there are still some open questions to be 

asked for future research. The research can possibly be extended to a portfolio of IRS’s and 

even a portfolio consisting of various asset classes. When estimating the 𝐸𝐸 of a portfolio it is 

then also possible to study the effects of netting and collateralisation. A major area for further 

research is the effect that different short rate models and their calibration to the local market 

have on 𝐸𝐸 estimation using the Monte Carlo methodology.  There are numerous recognised 

models for the short rate, some of which are very complex. Calibrating the model could improve 

how accurate the 𝐸𝐸 is estimated.  
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To calculate the CVA, the three main elements needed are the 𝐸𝐸, 𝑃𝐷 and the 𝐿𝐺𝐷. 𝑃𝐷 and 

𝐿𝐺𝐷 are in themselves very complex and their effect on CVA can be research topics on their 

own. One important assumption made in this study was that the effect of wrong-way risk was 

ignored. Wrong-way risk is the term used for the dependence between exposure and 

counterparty credit quality. When exposure is high, the counterparty is more likely to default. 

Therefore, the most interesting open question is how to quantify wrong-way risk and what the 

effect of wrong-way risk can have on CVA.  

Finally, these results show that CEM Method 1 and Method 2 are relatively inaccurate 

compared to Method 3. Considering the resources smaller non-financial organisations might 

have, it is the author’s opinion that Method 3 is a suitable replacement for the Monte Carlo 

method, although the Monte Carlo method is still notably more accurate.  
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APPENDIX A: MATHEMATICAL RESULTS 

A.1 MARTINGALE 

Definition (Martingale) A sequence of random variables 𝑋0, 𝑋1, … is a martingale if, for all 𝑖 > 0, 

𝐸(𝑋𝑖|𝑋𝑖−1, 𝑋𝑖−2, … , 𝑋0) = 𝑋𝑖−1, 

where 𝐸 denotes expectation (Hull, 2009:620). 

A.2 EQUIVALENT MARTINGALE MEASURE 

A price process 𝑁𝑡 is a numeraire if for all 𝑡 ∈ [0, 𝑇], the prices are strictly positive.  

Definition (Equivalent Martingale Measure) Suppose 𝑁 is a numeraire. A measure ℚ on 

(Ω, Ϝ) is a Equivalent Martingale Measure for numeraire 𝑁 if and only if  

1. ℚ is equivalent to ℙ i.e. both measures have the same null sets, 

2. �̂�𝑡 =
𝑆𝑡

𝑁𝑡
 is a ℚ-martingale 

(Jones, 2010:18). 

A.3 RISK-NEUTRAL VALUATION 

Theorem (Risk-Neutral Valuation) Suppose that 𝑋 is an attainable contingent claim, and that 

ℚ is an Equivalent Martingale Measure for numeraire 𝑁. Then,  

�̂�𝑡 = 𝐸ℚ[�̂�𝑇|Ϝ𝑡], 

i.e., 

𝑋𝑡 = 𝐸ℚ [
𝑋𝑇

𝑁𝑇
|Ϝ𝑡] 

 

(Jones, 2010:18). 
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APPENDIX B: TABLES AND FIGURES 

Table B.1: Exposure Profiles for 2-Year Swaps 

 

Time Monte 

Carlo

CEM: 

Method1

CEM: 

Method 3

Monte 

Carlo

CEM: 

Method1

CEM: 

Method 3

Monte 

Carlo

CEM: 

Method1

CEM: 

Method 3

0.00 0.00000 0.00500 0.00500 0.04691 0.05191 0.05191 0.12223 0.12723 0.12723

0.25 0.01047 0.00500 0.00438 0.04739 0.05191 0.04542 0.10673 0.12723 0.11132

0.50 0.01536 0.00500 0.00375 0.04590 0.05191 0.03893 0.09316 0.12723 0.09542

0.75 0.01687 0.00500 0.00313 0.04152 0.05191 0.03244 0.07911 0.12723 0.07952

1.00 0.01721 0.00500 0.00250 0.03597 0.05191 0.02595 0.06484 0.12723 0.06361

1.25 0.01475 0.00500 0.00188 0.02886 0.05191 0.01947 0.05007 0.12723 0.04771

1.50 0.01116 0.00500 0.00125 0.02076 0.05191 0.01298 0.03421 0.12723 0.03181

1.75 0.00627 0.00500 0.00063 0.01122 0.05191 0.00649 0.01760 0.12723 0.01590

2.00 0.00000 0.00500 0.00000 0.00000 0.05191 0.00000 0.00000 0.12723 0.00000

0.04 0.08 0.12

Swap Rate
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Table B.2: Exposure Profiles for 10-Year Swaps 

 

 

Time Monte 

Carlo

CEM: 

Method1

CEM: 

Method 3

Monte 

Carlo

CEM: 

Method1

CEM: 

Method 3

Monte 

Carlo

CEM: 

Method1

CEM: 

Method 3

0.00 0.00000 0.01500 0.01500 0.19338 0.20838 0.20838 0.50156 0.51656 0.51656

0.25 0.00231 0.01500 0.01463 0.19017 0.20838 0.20317 0.49002 0.51656 0.50365

0.50 0.00679 0.01500 0.01425 0.18498 0.20838 0.19796 0.47814 0.51656 0.49073

0.75 0.00987 0.01500 0.01388 0.18129 0.20838 0.19275 0.46605 0.51656 0.47782

1.00 0.01310 0.01500 0.01350 0.17816 0.20838 0.18754 0.45409 0.51656 0.46491

1.25 0.01492 0.01500 0.01313 0.17476 0.20838 0.18233 0.44142 0.51656 0.45199

1.50 0.01582 0.01500 0.01275 0.17129 0.20838 0.17712 0.42913 0.51656 0.43908

1.75 0.01733 0.01500 0.01238 0.16931 0.20838 0.17191 0.41754 0.51656 0.42616

2.00 0.01870 0.01500 0.01200 0.16527 0.20838 0.16670 0.40540 0.51656 0.41325

2.25 0.01953 0.01500 0.01163 0.16251 0.20838 0.16149 0.39186 0.51656 0.40034

2.50 0.02049 0.01500 0.01125 0.15799 0.20838 0.15628 0.38111 0.51656 0.38742

2.75 0.02101 0.01500 0.01088 0.15410 0.20838 0.15107 0.37085 0.51656 0.37451

3.00 0.02172 0.01500 0.01050 0.14977 0.20838 0.14587 0.35821 0.51656 0.36159

3.25 0.02240 0.01500 0.01013 0.14555 0.20838 0.14066 0.34611 0.51656 0.34868

3.50 0.02302 0.01500 0.00975 0.14141 0.20838 0.13545 0.33312 0.51656 0.33576

3.75 0.02389 0.01500 0.00938 0.13630 0.20838 0.13024 0.32301 0.51656 0.32285

4.00 0.02436 0.01500 0.00900 0.13274 0.20838 0.12503 0.31103 0.51656 0.30994

4.25 0.02498 0.01500 0.00863 0.12791 0.20838 0.11982 0.30087 0.51656 0.29702

4.50 0.02508 0.01500 0.00825 0.12249 0.20838 0.11461 0.28707 0.51656 0.28411

4.75 0.02542 0.01500 0.00788 0.11913 0.20838 0.10940 0.27525 0.51656 0.27119

5.00 0.02509 0.01500 0.00750 0.11494 0.20838 0.10419 0.26127 0.51656 0.25828

5.25 0.02584 0.01500 0.00713 0.11171 0.20838 0.09898 0.24987 0.51656 0.24537

5.50 0.02575 0.01500 0.00675 0.10825 0.20838 0.09377 0.23864 0.51656 0.23245

5.75 0.02666 0.01500 0.00638 0.10409 0.20838 0.08856 0.22650 0.51656 0.21954

6.00 0.02663 0.01500 0.00600 0.09990 0.20838 0.08335 0.21465 0.51656 0.20662

6.25 0.02683 0.01500 0.00563 0.09553 0.20838 0.07814 0.20367 0.51656 0.19371

6.50 0.02719 0.01500 0.00525 0.09181 0.20838 0.07293 0.19158 0.51656 0.18080

6.75 0.02716 0.01500 0.00488 0.08737 0.20838 0.06772 0.17799 0.51656 0.16788

7.00 0.02720 0.01500 0.00450 0.08296 0.20838 0.06251 0.16635 0.51656 0.15497

7.25 0.02731 0.01500 0.00413 0.07742 0.20838 0.05730 0.15385 0.51656 0.14205

7.50 0.02670 0.01500 0.00375 0.07243 0.20838 0.05209 0.14053 0.51656 0.12914

7.75 0.02616 0.01500 0.00338 0.06754 0.20838 0.04689 0.12770 0.51656 0.11623

8.00 0.02559 0.01500 0.00300 0.06264 0.20838 0.04168 0.11555 0.51656 0.10331

8.25 0.02423 0.01500 0.00263 0.05701 0.20838 0.03647 0.10270 0.51656 0.09040

8.50 0.02309 0.01500 0.00225 0.05086 0.20838 0.03126 0.08947 0.51656 0.07748

8.75 0.02092 0.01500 0.00188 0.04490 0.20838 0.02605 0.07570 0.51656 0.06457

9.00 0.01869 0.01500 0.00150 0.03690 0.20838 0.02084 0.06158 0.51656 0.05166

9.25 0.01545 0.01500 0.00113 0.02903 0.20838 0.01563 0.04741 0.51656 0.03874

9.50 0.01127 0.01500 0.00075 0.02050 0.20838 0.01042 0.03266 0.51656 0.02583

9.75 0.00623 0.01500 0.00038 0.01081 0.20838 0.00521 0.01706 0.51656 0.01291

10.00 0.00000 0.01500 0.00000 0.00000 0.20838 0.00000 0.00000 0.51656 0.00000

Swap Rate

0.04 0.08 0.12
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Table B.3: Exposure Profiles for 25-Year Swaps 

 

Time Monte 

Carlo

CEM: 

Method1

CEM: 

Method 3

Monte 

Carlo

CEM: 

Method1

CEM: 

Method 3

Monte 

Carlo

CEM: 

Method1

CEM: 

Method 3

0.00 0.00000 0.01500 0.01500 0.35329 0.36829 0.36829 0.89882 0.91382 0.91382

0.25 0.00008 0.01500 0.01485 0.35105 0.36829 0.36461 0.89192 0.91382 0.90468

0.50 0.00086 0.01500 0.01470 0.34772 0.36829 0.36092 0.88486 0.91382 0.89554

0.75 0.00184 0.01500 0.01455 0.34322 0.36829 0.35724 0.87851 0.91382 0.88640

1.00 0.00269 0.01500 0.01440 0.33899 0.36829 0.35356 0.86989 0.91382 0.87727

1.25 0.00355 0.01500 0.01425 0.33687 0.36829 0.34987 0.85879 0.91382 0.86813

1.50 0.00406 0.01500 0.01410 0.33304 0.36829 0.34619 0.85184 0.91382 0.85899

1.75 0.00458 0.01500 0.01395 0.32888 0.36829 0.34251 0.84532 0.91382 0.84985

2.00 0.00472 0.01500 0.01380 0.32509 0.36829 0.33883 0.83760 0.91382 0.84071

2.25 0.00517 0.01500 0.01365 0.32205 0.36829 0.33514 0.82861 0.91382 0.83158

2.50 0.00504 0.01500 0.01350 0.31790 0.36829 0.33146 0.82507 0.91382 0.82244

2.75 0.00491 0.01500 0.01335 0.31488 0.36829 0.32778 0.81800 0.91382 0.81330

3.00 0.00505 0.01500 0.01320 0.31225 0.36829 0.32409 0.81169 0.91382 0.80416

3.25 0.00538 0.01500 0.01305 0.31121 0.36829 0.32041 0.80454 0.91382 0.79502

3.50 0.00615 0.01500 0.01290 0.30927 0.36829 0.31673 0.79915 0.91382 0.78588

3.75 0.00618 0.01500 0.01275 0.30755 0.36829 0.31305 0.79244 0.91382 0.77675

4.00 0.00616 0.01500 0.01260 0.30460 0.36829 0.30936 0.78738 0.91382 0.76761

4.25 0.00638 0.01500 0.01245 0.30245 0.36829 0.30568 0.78228 0.91382 0.75847

4.50 0.00639 0.01500 0.01230 0.29961 0.36829 0.30200 0.77598 0.91382 0.74933

4.75 0.00637 0.01500 0.01215 0.29715 0.36829 0.29831 0.77164 0.91382 0.74019

5.00 0.00631 0.01500 0.01200 0.29514 0.36829 0.29463 0.76769 0.91382 0.73106

5.25 0.00654 0.01500 0.01185 0.29272 0.36829 0.29095 0.76316 0.91382 0.72192

5.50 0.00651 0.01500 0.01170 0.28989 0.36829 0.28727 0.75977 0.91382 0.71278

5.75 0.00682 0.01500 0.01155 0.28884 0.36829 0.28358 0.75530 0.91382 0.70364

6.00 0.00671 0.01500 0.01140 0.28483 0.36829 0.27990 0.74782 0.91382 0.69450

6.25 0.00674 0.01500 0.01125 0.28236 0.36829 0.27622 0.74122 0.91382 0.68536

6.50 0.00665 0.01500 0.01110 0.28213 0.36829 0.27253 0.73412 0.91382 0.67623

6.75 0.00690 0.01500 0.01095 0.28228 0.36829 0.26885 0.72760 0.91382 0.66709

7.00 0.00696 0.01500 0.01080 0.27934 0.36829 0.26517 0.72104 0.91382 0.65795

7.25 0.00666 0.01500 0.01065 0.27547 0.36829 0.26148 0.71542 0.91382 0.64881

7.50 0.00682 0.01500 0.01050 0.27209 0.36829 0.25780 0.71123 0.91382 0.63967

7.75 0.00744 0.01500 0.01035 0.26739 0.36829 0.25412 0.70582 0.91382 0.63053

8.00 0.00756 0.01500 0.01020 0.26418 0.36829 0.25044 0.69951 0.91382 0.62140

8.25 0.00792 0.01500 0.01005 0.26148 0.36829 0.24675 0.69162 0.91382 0.61226

8.50 0.00817 0.01500 0.00990 0.25911 0.36829 0.24307 0.68424 0.91382 0.60312

8.75 0.00821 0.01500 0.00975 0.25735 0.36829 0.23939 0.67601 0.91382 0.59398

9.00 0.00836 0.01500 0.00960 0.25644 0.36829 0.23570 0.66920 0.91382 0.58484

9.25 0.00841 0.01500 0.00945 0.25548 0.36829 0.23202 0.66136 0.91382 0.57571

9.50 0.00877 0.01500 0.00930 0.25386 0.36829 0.22834 0.65559 0.91382 0.56657

9.75 0.00883 0.01500 0.00915 0.25041 0.36829 0.22466 0.64897 0.91382 0.55743

10.00 0.00906 0.01500 0.00900 0.24696 0.36829 0.22097 0.64124 0.91382 0.54829

0.04 0.08 0.12

Swap Rate
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Time Monte 

Carlo

CEM: 

Method1

CEM: 

Method 3

Monte 

Carlo

CEM: 

Method1

CEM: 

Method 3

Monte 

Carlo

CEM: 

Method1

CEM: 

Method 3

10.25 0.00944 0.01500 0.00885 0.24438 0.36829 0.21729 0.63477 0.91382 0.53915

10.50 0.00979 0.01500 0.00870 0.24316 0.36829 0.21361 0.62603 0.91382 0.53001

10.75 0.00990 0.01500 0.00855 0.23866 0.36829 0.20992 0.61811 0.91382 0.52088

11.00 0.01056 0.01500 0.00840 0.23753 0.36829 0.20624 0.61068 0.91382 0.51174

11.25 0.01036 0.01500 0.00825 0.23528 0.36829 0.20256 0.60384 0.91382 0.50260

11.50 0.01071 0.01500 0.00810 0.23227 0.36829 0.19888 0.59595 0.91382 0.49346

11.75 0.01114 0.01500 0.00795 0.22895 0.36829 0.19519 0.59079 0.91382 0.48432

12.00 0.01162 0.01500 0.00780 0.22499 0.36829 0.19151 0.58143 0.91382 0.47519

12.25 0.01225 0.01500 0.00765 0.22158 0.36829 0.18783 0.57255 0.91382 0.46605

12.50 0.01239 0.01500 0.00750 0.22009 0.36829 0.18414 0.56408 0.91382 0.45691

12.75 0.01297 0.01500 0.00735 0.21714 0.36829 0.18046 0.55567 0.91382 0.44777

13.00 0.01327 0.01500 0.00720 0.21431 0.36829 0.17678 0.54597 0.91382 0.43863

13.25 0.01387 0.01500 0.00705 0.21057 0.36829 0.17310 0.53479 0.91382 0.42949

13.50 0.01403 0.01500 0.00690 0.20739 0.36829 0.16941 0.52434 0.91382 0.42036

13.75 0.01393 0.01500 0.00675 0.20374 0.36829 0.16573 0.51555 0.91382 0.41122

14.00 0.01446 0.01500 0.00660 0.19984 0.36829 0.16205 0.50746 0.91382 0.40208

14.25 0.01483 0.01500 0.00645 0.19636 0.36829 0.15836 0.49911 0.91382 0.39294

14.50 0.01508 0.01500 0.00630 0.19265 0.36829 0.15468 0.49027 0.91382 0.38380

14.75 0.01516 0.01500 0.00615 0.18737 0.36829 0.15100 0.48206 0.91382 0.37467

15.00 0.01518 0.01500 0.00600 0.18584 0.36829 0.14732 0.47316 0.91382 0.36553

15.25 0.01569 0.01500 0.00585 0.18311 0.36829 0.14363 0.46371 0.91382 0.35639

15.50 0.01682 0.01500 0.00570 0.17926 0.36829 0.13995 0.45346 0.91382 0.34725

15.75 0.01696 0.01500 0.00555 0.17606 0.36829 0.13627 0.44494 0.91382 0.33811

16.00 0.01716 0.01500 0.00540 0.17102 0.36829 0.13258 0.43482 0.91382 0.32897

16.25 0.01741 0.01500 0.00525 0.16768 0.36829 0.12890 0.42598 0.91382 0.31984

16.50 0.01788 0.01500 0.00510 0.16496 0.36829 0.12522 0.41763 0.91382 0.31070

16.75 0.01811 0.01500 0.00495 0.16029 0.36829 0.12154 0.40808 0.91382 0.30156

17.00 0.01873 0.01500 0.00480 0.15675 0.36829 0.11785 0.39657 0.91382 0.29242

17.25 0.01916 0.01500 0.00465 0.15357 0.36829 0.11417 0.38514 0.91382 0.28328

17.50 0.01965 0.01500 0.00450 0.14947 0.36829 0.11049 0.37510 0.91382 0.27415

17.75 0.02043 0.01500 0.00435 0.14726 0.36829 0.10680 0.36456 0.91382 0.26501

18.00 0.02157 0.01500 0.00420 0.14253 0.36829 0.10312 0.35394 0.91382 0.25587

18.25 0.02162 0.01500 0.00405 0.13849 0.36829 0.09944 0.34409 0.91382 0.24673

18.50 0.02269 0.01500 0.00390 0.13584 0.36829 0.09576 0.33212 0.91382 0.23759

18.75 0.02365 0.01500 0.00375 0.13305 0.36829 0.09207 0.31986 0.91382 0.22845

19.00 0.02375 0.01500 0.00360 0.12918 0.36829 0.08839 0.30770 0.91382 0.21932

19.25 0.02459 0.01500 0.00345 0.12663 0.36829 0.08471 0.29736 0.91382 0.21018

19.50 0.02459 0.01500 0.00330 0.12322 0.36829 0.08102 0.28651 0.91382 0.20104

19.75 0.02500 0.01500 0.00315 0.11808 0.36829 0.07734 0.27504 0.91382 0.19190

20.00 0.02519 0.01500 0.00300 0.11336 0.36829 0.07366 0.26342 0.91382 0.18276

20.25 0.02564 0.01500 0.00285 0.10940 0.36829 0.06997 0.25098 0.91382 0.17363

Swap Rate

0.04 0.08 0.12
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Figure B.1: Exposure Profiles for the 4% 2-Year IRS for different methods 

 

 

 

 

 

Time Monte 

Carlo

CEM: 

Method1

CEM: 

Method 3

Monte 

Carlo

CEM: 

Method1

CEM: 

Method 3

Monte 

Carlo

CEM: 

Method1

CEM: 

Method 3

20.50 0.02645 0.01500 0.00270 0.10533 0.36829 0.06629 0.23903 0.91382 0.16449

20.75 0.02657 0.01500 0.00255 0.10246 0.36829 0.06261 0.22721 0.91382 0.15535

21.00 0.02712 0.01500 0.00240 0.09775 0.36829 0.05893 0.21622 0.91382 0.14621

21.25 0.02750 0.01500 0.00225 0.09374 0.36829 0.05524 0.20433 0.91382 0.13707

21.50 0.02742 0.01500 0.00210 0.09019 0.36829 0.05156 0.19261 0.91382 0.12793

21.75 0.02771 0.01500 0.00195 0.08665 0.36829 0.04788 0.18038 0.91382 0.11880

22.00 0.02795 0.01500 0.00180 0.08220 0.36829 0.04419 0.16829 0.91382 0.10966

22.25 0.02683 0.01500 0.00165 0.07820 0.36829 0.04051 0.15652 0.91382 0.10052

22.50 0.02690 0.01500 0.00150 0.07295 0.36829 0.03683 0.14231 0.91382 0.09138

22.75 0.02670 0.01500 0.00135 0.06744 0.36829 0.03315 0.12947 0.91382 0.08224

23.00 0.02579 0.01500 0.00120 0.06125 0.36829 0.02946 0.11681 0.91382 0.07311

23.25 0.02488 0.01500 0.00105 0.05545 0.36829 0.02578 0.10431 0.91382 0.06397

23.50 0.02322 0.01500 0.00090 0.04948 0.36829 0.02210 0.09115 0.91382 0.05483

23.75 0.02077 0.01500 0.00075 0.04324 0.36829 0.01841 0.07645 0.91382 0.04569

24.00 0.01823 0.01500 0.00060 0.03611 0.36829 0.01473 0.06229 0.91382 0.03655

24.25 0.01503 0.01500 0.00045 0.02838 0.36829 0.01105 0.04778 0.91382 0.02741

24.50 0.01111 0.01500 0.00030 0.02002 0.36829 0.00737 0.03266 0.91382 0.01828

24.75 0.00621 0.01500 0.00015 0.01050 0.36829 0.00368 0.01680 0.91382 0.00914

25.00 0.00000 0.01500 0.00000 0.00000 0.36829 0.00000 0.00000 0.91382 0.00000

Swap Rate

0.04 0.08 0.12
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Figure B.2: Exposure Profiles for the 4% 25-Year IRS for different methods 

 

Figure B.3: Exposure Profiles for the 8% 2-Year IRS for different methods 
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Figure B.4: Exposure Profiles for the 8% 25-Year IRS for different methods 

 

Figure B.5: Exposure Profiles for the 12% 2-Year IRS for different methods 
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Figure B.6: Exposure Profiles for the 12% 25-Year IRS for different methods 
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APPENDIX C: R CODE 

#VASICEK MODEL 

VasicekZeroRates<-function(a,b,sigma,r0,T,dt,n) 

{ 

  t<-c(seq(0,T,(1/252))) 

  T.min.t<-T-rev(t)  

  length<-(T*252)+1 

   

  shortrate<-function(r) 

  { 

   temp1<-a*(b-r)*(1/252) 

   temp2<-sigma*rnorm(1)*sqrt(1/252) 

   rt<-r+temp1+temp2 

   return(rt) 

  }  

   

  f<-matrix(r0,nrow=(T*252)+1,ncol=n) 

  

  for(j in 1:n) 

  { 

   for(i in 1:(T*252)+1) 

   { 

    f[i,j]<-shortrate(f[i-1,j])  

   } 

 } 

 #return(f) 

  

 Bvec<-(1-exp(-a*(T.min.t)))/a 

 #return(Bvec) 

  

 Avec<-exp((((Bvec-T.min.t)*(((a^2)*b)-(sigma^2)/2))/(a^2))-

(((sigma^2)*(Bvec^2))/(4*a))) 

  #return(Avec) 

  

  Bmat<-matrix(NA,ncol=length,nrow=length) 

  

  for(i in 1:length) 

   { 

   Bmat[,i]<-Bvec*f[i] 

   } 

  #return(Bmat)  

   

  #Calculate the zero rates at time t=0,0.25,...for ith maturity 

i=dt,2dt,...,T 

  temp1<-log(Avec) 

  temp2<-Bmat*(1/T.min.t) 

  temp3<-(1/T.min.t)*temp1 

  Rmat<-temp2-temp3   

  Rmat[1,]<-0 

  Rmat<-Rmat[,-length(Bvec)] 

  Rmat<-Rmat[seq(1,nrow(Rmat),63),seq(1,ncol(Rmat),63)]   

  return(Rmat) 

  

  #Rmat[1,1]<-NA 
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 #plot(x=seq(0,T,dt),y=Rmat[,1],type="l", 

#col="mediumorchid2",xlab="Time in Years",ylab="R(0,T)",  

  #  main="Vasicek Zero Curve") 

   

} 

 

#FORWARD RATES 

ForwardRates<-function(zcurve,T,dt) 

{  

  t<-c(seq(0,T,dt)) 

  T.min.t<-T-rev(t) 

   

  FR<-NULL 

  for(i in 1:length(zcurve)-1) 

  { 

   FR[i]<-((zcurve[i+1]*t[i+1])-(zcurve[i]*t[i]))/dt 

  }  

  

  temp1<-FR*dt 

  

  FRmat<-exp(temp1)-1 #compounded dt'ly 

   

 } 

 

#DISCOUNTING COUPONS 

Discount<-function(coupmat,zcurve,T,dt) 

{ 

  t<-c(seq(0,T,dt)) 

  T.min.t<-T-rev(t)  

  

  DFmat<-exp(-zcurve*t) 

  #return(DFmat) 

  

 if (is.vector(DFmat)==TRUE) PVmat<-DFmat[2:length(DFmat)]*coupmat 

  

  else PVmat<-DFmat[2:nrow(DFmat),]*coupmat  

  

  return(PVmat) 

  

} 

  

#PV COUPONS 

PV<-function(PVmat) 

{ 

  if (is.vector(PVmat)==TRUE) PV<-sum(PVmat) 

  

  else PV<-apply(PVmat,2,sum) 

  return(PV) 

 } 

 

#SWAP MTM 

SwapMtM<-function(PVfixed,PVfloat,payfixed=1) 

{ 

  if (payfixed==1) MtM<-PVfixed-PVfloat 

  else MtM<-PVfloat-PVfixed 

   



54 

 

  MtM[length(MtM)+1]<-0 

  return(MtM) 

} 

 

#SWAP VALUE 

SwapValue<-function(a,b,sigma,swapvec,r0) 

{ 

  swaprate<-swapvec[1] 

  T<-swapvec[2] 

  payfixed<-swapvec[3] 

  spread<-swapvec[4] 

  dt<-swapvec[5] 

  

  t<-c(seq(0,T,dt)) 

  

  ZC<-VasicekZeroRates(a=a,b=b,sigma=sigma,r0=r0,T=T,dt=dt,n=1) 

  ZC1<-ZC+spread 

  

  Float<-apply(ZC1,2,ForwardRates,T=T,dt=dt) 

  Float<-Float[,ncol(Float):1] 

  Float[lower.tri(Float)]<-0 

  Float<-Float[,ncol(Float):1] 

  

  Fixed<-

 matrix(c(rep(swaprate*dt,times=(T/dt)^2)),nrow=T/dt,ncol=T/dt) 

  Fixed<-Fixed[,ncol(Fixed):1] 

  Fixed[lower.tri(Fixed)]<-0 

  Fixed<-Fixed[,ncol(Fixed):1]  

  

  Discfloat<-Discount(coupmat=Float,zcurve=ZC,T=T,dt=dt) 

  Discfixed<-Discount(coupmat=Fixed,zcurve=ZC,T=T,dt=dt)  

  

  PVfloat<-apply(Discfloat,2,sum) 

  PVfixed<-apply(Discfixed,2,sum) 

  

 MtMValue<-

SwapMtM(PVfixed=PVfixed,PVfloat=PVfloat,payfixed=payfixed) 

  return(MtMValue) 

  

  #plot(x=t,y=MtMValue,type="l") 

 } 

 

#Plot van MtM Values, EE en PFE 

Exposure<-function(a,b,sigma,swapvec,r0,n) 

{ 

  Time.elapsed<-proc.time()[3] 

  T<-swapvec[2] 

  dt<-swapvec[5] 

   

  FutureValues<-matrix(NA,nrow=(T/dt)+1,ncol=n) 

  for(i in 1:n) 

  { 

 FutureValues[,i]<-

SwapValue(a=a,b=b,sigma=sigma,swapvec=swapvec,r0=r0) 

  } 
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  FutureValuesTemp<-FutureValues 

  FutureValuesTemp2<-apply(FutureValues,1,sort) 

  FutureValuesTemp[FutureValuesTemp<0]<-0 

  

  EE<-(apply(FutureValuesTemp,1,sum))/n 

  #return(EE) 

  

  PFE<-(FutureValuesTemp2[0.95*n,]) 

  E<-cbind(EE,PFE) 

  

  Time.elapsed<-proc.time()[3]-Time.elapsed 

  

  par(mfrow=c(2,1)) 

  plot<-matplot(x=c(seq(0,T,dt)),y=FutureValues,xlab="Time (Years)", 

     ylab="Future Simulated MtM Values of 

swap",type="l",lty=1,col=1:n,xaxs="i") 

  abline(h=0,lwd=2)     

  

 matplot(x=c(seq(0,T,dt)),y=E,xlab="Time 

(Years)",ylab="Exposure",type="l",lty=1,xaxs="i",col=1:(T/dt)) 

  abline(h=0,lwd=2) 

  list(EE=EE,PFE=PFE,Time.elapsed=Time.elapsed) 

  

  #return (plot) 

 } 

 


